3D model of the olfactory bulb (Migliore et al. 2014)

 Download zip file 
Help downloading and running models
Accession:151681
This entry contains a link to a full HD version of movie 1 and the NEURON code of the paper: "Distributed organization of a brain microcircuit analysed by three-dimensional modeling: the olfactory bulb" by M Migliore, F Cavarretta, ML Hines, and GM Shepherd.
Reference:
1 . Migliore M, Cavarretta F, Hines ML, Shepherd GM (2014) Distributed organization of a brain microcircuit analyzed by three-dimensional modeling: the olfactory bulb. Front Comput Neurosci 8:50 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Channel/Receptor; Dendrite;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell;
Channel(s): I Na,t; I A; I K;
Gap Junctions:
Receptor(s): NMDA; Glutamate; Gaba;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Pattern Recognition; Activity Patterns; Bursting; Temporal Pattern Generation; Oscillations; Synchronization; Active Dendrites; Detailed Neuronal Models; Synaptic Plasticity; Action Potentials; Synaptic Integration; Unsupervised Learning; Olfaction;
Implementer(s): Hines, Michael [Michael.Hines at Yale.edu]; Migliore, Michele [Michele.Migliore at Yale.edu]; Cavarretta, Francesco [francescocavarretta at hotmail.it];
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; Olfactory bulb main interneuron granule MC GABA cell; NMDA; Glutamate; Gaba; I Na,t; I A; I K;
/
bulb3d
readme.html
ampanmda.mod *
distrt.mod *
fi.mod *
kamt.mod *
kdrmt.mod *
naxn.mod *
ThreshDetect.mod *
all2all.py *
balance.py *
bindict.py
BulbSurf.py
colors.py *
common.py
complexity.py *
custom_params.py *
customsim.py
destroy_model.py *
determine_connections.py
distribute.py *
fig7.py
fixnseg.hoc *
getmitral.py
gidfunc.py *
glom.py
granule.hoc *
granules.py
input-odors.txt *
loadbalutil.py *
lpt.py *
mayasyn.py
mgrs.py
misc.py
mitral.hoc *
mitral_dend_density.py
mkmitral.py
modeldata.py *
multisplit_distrib.py *
net_mitral_centric.py
odordisp.py *
odors.py *
odorstim.py
params.py
parrun.py
realgloms.txt *
runsim.py
split.py *
util.py *
weightsave.py *
                            
: copied by Hines from Exp2syn and added spike dependent plasticity
COMMENT
Two state kinetic scheme synapse described by rise time tau1,
and decay time constant tau2. The normalized peak condunductance is 1.
Decay time MUST be greater than rise time.

The solution of A->G->bath with rate constants 1/tau1 and 1/tau2 is
 A = a*exp(-t/tau1) and
 G = a*tau2/(tau2-tau1)*(-exp(-t/tau1) + exp(-t/tau2))
	where tau1 < tau2

If tau2-tau1 -> 0 then we have a alphasynapse.
and if tau1 -> 0 then we have just single exponential decay.

The factor is evaluated in the
initial block such that an event of weight 1 generates a
peak conductance of 1.

Because the solution is a sum of exponentials, the
coupled equations can be solved as a pair of independent equations
by the more efficient cnexp method.

ENDCOMMENT

NEURON {
	POINT_PROCESS FastInhib
	RANGE tau1, tau2, e, i
	NONSPECIFIC_CURRENT i
	RANGE gmax
	RANGE x, mgid, ggid, srcgid
	GLOBAL ltdinvl, ltpinvl, sighalf, sigslope

	RANGE g
}

UNITS {
	(nA) = (nanoamp)
	(mV) = (millivolt)
	(uS) = (microsiemens)
}

PARAMETER {
	tau1=1 (ms) <1e-9,1e9>
	tau2 = 200 (ms) <1e-9,1e9>
	gmax = .003 (uS) 
	e = -80	(mV)
	ltdinvl = 250 (ms)		: longer intervals, no change
	ltpinvl = 33.33 (ms)		: shorter interval, LTP
	sighalf = 50 (1)
	sigslope = 10 (1)
	x = 0 (um) : cartesian synapse location
	mgid = -1 : associated mitral gid
	ggid = -1 : associated granule gid
	srcgid = -1 : the gid of the granule detector
}

ASSIGNED {
	v (mV)
	i (nA)
	g (uS)
	factor
	w (uS)
	total (uS)
}

STATE {
	A
	B
}

INITIAL {
	LOCAL tp
	if (tau1/tau2 > .9999) {
		tau1 = .9999*tau2
	}
	A = 0
	B = 0
	tp = (tau1*tau2)/(tau2 - tau1) * log(tau2/tau1)
	factor = -exp(-tp/tau1) + exp(-tp/tau2)
	factor = 1/factor
}

BREAKPOINT {
	SOLVE state METHOD cnexp
	g = (B - A)*gmax
	i = g*(v - e)
}

DERIVATIVE state {
	A' = -A/tau1
	B' = -B/tau2
}

FUNCTION plast(step(1))(1) {
	plast = 1 - 1/(1 + exp((step - sighalf)/sigslope))
}

NET_RECEIVE(weight, s, w, tlast (ms)) {
	INITIAL {
		:s = 0
		w = weight*plast(s)
		tlast = -1e9(ms)
	}
	if (t - tlast < ltpinvl) { : LTP
		s = s + 1
		if (s > 2*sighalf) { s = 2*sighalf }
	}else if (t - tlast > ltdinvl) { : no change
	}else{ : LTD
		s = s - 1
		if (s < 0) { s = 0 }
	}
	tlast = t
	w = weight*plast(s)
	A = A + w*factor
	B = B + w*factor
}