Ionic mechanisms of dendritic spikes (Almog and Korngreen 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:151825
We used a combined experimental and numerical parameter peeling procedure was implemented to optimize a detailed ionic mechanism for the generation and propagation of dendritic spikes in neocortical L5 pyramidal neurons. Run the cc_run.hoc to get a demo for dendritic calcium spike generated by coincidence of a back-propagating AP and distal synaptic input.
Reference:
1 . Almog M, Korngreen A (2014) A Quantitative Description of Dendritic Conductances and Its Application to Dendritic Excitation in Layer 5 Pyramidal Neurons J Neurosci 34(1):182-196
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,t; I A; I K; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium; Ca pump;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials;
Implementer(s): Korngreen, Alon [alon.korngreen at gmail.com];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; I Na,t; I A; I K; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium; Ca pump;
TITLE BK-type Purkinje calcium-activated potassium current

COMMENT

NEURON implementation of a BK-channel in Purkinje cells
Kinetical Scheme: Hodgkin-Huxley (m^3*z^2*h)

Modified from Khaliq et al., J.Neurosci. 23(2003)4899
 
Laboratory for Neuronal Circuit Dynamics
RIKEN Brain Science Institute, Wako City, Japan
http://www.neurodynamics.brain.riken.jp

Reference: Akemann and Knoepfel, J.Neurosci. 26 (2006) 4602
Date of Implementation: May 2005
Contact: akemann@brain.riken.jp


ENDCOMMENT

NEURON {
       SUFFIX bk
       USEION k READ ek WRITE ik
       USEION ca READ cai
       RANGE gbar, gk,  ik, minf, taum, hinf, tauh, zinf, tauz
       GLOBAL zhalf
}

UNITS {
	(mV) = (millivolt)
	(mA) = (milliamp)
	(nA) = (nanoamp)
	(pA) = (picoamp)
	(S)  = (siemens)
	(nS) = (nanosiemens)
	(pS) = (picosiemens)
	(um) = (micron)
	(molar) = (1/liter)
	(mM) = (millimolar)		
}

CONSTANT {
	q10 = 3
	
	cvm = 28.9 (mV)
	ckm = 6.2 (mV)

	ctm = 0.000505 (s)
	cvtm1 = 86.4 (mV)
	cktm1 = -10.1 (mV)
	cvtm2 = -33.3 (mV)
	cktm2 = 10 (mV)

	ctauz = 1 (ms)

	ch = 0.085
	cvh = 32 (mV)
	ckh = -5.8 (mV)
	cth = 0.0019 (s)
	cvth1 = 48.5 (mV)
	ckth1 = -5.2 (mV)
	cvth2 = -54.2 (mV)
	ckth2 = 12.9 (mV)
}

PARAMETER {
	v (mV)
	celsius (degC)

	gbar = 40 (pS/um2)

	ek (mV)
	cai (mM)

	zhalf = 0.01 (mM)
}

ASSIGNED {
	ik (mA/cm2)
	qt
    gk (pS/um2)   
	minf
	taum (ms)
	hinf
	tauh (ms)
	zinf
    tauz (ms)
}

STATE {
	m   FROM 0 TO 1
	z   FROM 0 TO 1
	h   FROM 0 TO 1
}

INITIAL {
	qt = q10^((celsius-22 (degC))/10 (degC))
	rates(v)
	m = minf
	z = zinf
	h = hinf
}

BREAKPOINT {
	SOLVE states METHOD cnexp
      gk = gbar * m^3 * z^2 * h      
	ik = (1e-4)* gk * (v - ek)
}

DERIVATIVE states {
	rates(v)
	m' = (minf-m)/taum
	z' = (zinf-z)/tauz
	h' = (hinf-h)/tauh
}

PROCEDURE rates( v (mV) ) {
	v = v + 5 (mV)
	minf = 1 / ( 1+exp(-(v+cvm)/ckm) )
	taum = (1e3) * ( ctm + 1 (s) / ( exp(-(v+cvtm1)/cktm1) + exp(-(v+cvtm2)/cktm2) ) ) / qt
	
	zinf = 1 /(1 + zhalf/cai)
      tauz = ctauz/qt

	hinf = ch + (1-ch) / ( 1+exp(-(v+cvh)/ckh) )
	tauh = (1e3) * ( cth + 1 (s) / ( exp(-(v+cvth1)/ckth1) + exp(-(v+cvth2)/ckth2) ) ) / qt
}