Ionic mechanisms of dendritic spikes (Almog and Korngreen 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:151825
We used a combined experimental and numerical parameter peeling procedure was implemented to optimize a detailed ionic mechanism for the generation and propagation of dendritic spikes in neocortical L5 pyramidal neurons. Run the cc_run.hoc to get a demo for dendritic calcium spike generated by coincidence of a back-propagating AP and distal synaptic input.
Reference:
1 . Almog M, Korngreen A (2014) A Quantitative Description of Dendritic Conductances and Its Application to Dendritic Excitation in Layer 5 Pyramidal Neurons J Neurosci 34(1):182-196
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I Na,t; I A; I K; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium; Ca pump;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials;
Implementer(s): Korngreen, Alon [alon.korngreen at gmail.com];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; I Na,t; I A; I K; I K,Ca; I CAN; I Sodium; I Calcium; I Potassium; Ca pump;
:modified 1/7/2007 by Chris Deister for the GP neuron (to remove some of the background current that existed in Mercer 2007)

NEURON {
	SUFFIX sk
	USEION k READ ek WRITE ik
        USEION ca READ cai
        RANGE  gbar,gkahp,ik, inf,tau,g
        GLOBAL Cq10
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(molar) = (1/liter)
	(mM) = (millimolar)
	(pS) = (picosiemens)
	(um) = (micron)
}

PARAMETER {
	gbar = 0	(pS/um2)
        n = 4
        cai = 50.e-6	(mM)
        a0 = 1.3e4	(1/ms-mM-mM-mM-mM)	:b0/(1.4e-4^4)
        b0 = 0.06	(1/ms)			:0.5/(0.100e3), was .5e-2	(1/ms)	
	    celsius = 37(degC)
	Cq10 = 3
}

STATE {	w }

ASSIGNED {
	ik	(mA/cm2)
        g	(pS/um2)
        inf
        tau	(ms)
	a	(1/ms)
        v	(mV)
        ek	(mV)
}

BREAKPOINT {
	SOLVE state METHOD cnexp
	g = gbar*w
	ik = (1e-4)* g*(v-ek)
}

INITIAL {
	rate(cai)
	w=inf
}

DERIVATIVE state {
	rate(cai)
	w' = (inf - w)/tau
}

PROCEDURE rate(cai (mM)) {
	LOCAL q10
	q10 = Cq10^((celsius - 22 (degC))/10 (degC) )
	a = a0*cai^4
	tau = q10/(a + b0)
	inf = a/(a + b0)
}