Intrinsic sensory neurons of the gut (Chambers et al. 2014)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:155796
A conductance base model of intrinsic neurons neurons in the gastrointestinal tract. The model contains all the major voltage-gated and calcium-gated currents observed in these neurons. This model can reproduce physiological observations such as the response to multiple brief depolarizing currents, prolonged depolarizing currents and hyperpolarizing currents. This model can be used to predict how different currents influence the excitability of intrinsic sensory neurons in the gut.
Reference:
1 . Chambers JD, Bornstein JC, Gwynne RM, Koussoulas K, Thomas EA (2014) A detailed, conductance-based computer model of intrinsic sensory neurons of the gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 307:G517-32 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Channel/Receptor;
Brain Region(s)/Organism:
Cell Type(s): Gastrointestinal tract intrinsic sensory neuron;
Channel(s): I Na,p; I Na,t; I K,leak; I K,Ca; I CAN; I Mixed; I Na, leak; Ca pump;
Gap Junctions:
Receptor(s):
Gene(s): Nav1.3 SCN3A; Nav1.7 SCN9A; Nav1.9 SCN11A SCN12A;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Detailed Neuronal Models; Action Potentials; Calcium dynamics;
Implementer(s): Chambers, Jordan [jordandchambers at gmail.com];
Search NeuronDB for information about:  I Na,p; I Na,t; I K,leak; I K,Ca; I CAN; I Mixed; I Na, leak; Ca pump;
{load_file("stdlib.hoc")}
celsius=36
{load_file("soma.hoc")}
access soma

///// Conductance changes required to produce an additive effect in the calcium concentration in the second voltage ramp /////
//gcaca_jcal = 0.01e-4
//taur_jcal = 10e1
//gbar_can = 4e-2

//integration time step
dt = 0.01
tstop = 12200

//inserting current clamp at soma
access soma
objectvar stim
stim = new jSEClamp(0.5)
stim.dur1 = 100
stim.amp1 = -80
stim.dur2 = 4000
stim.amp2 = -120
stim.dur3 = 2000
stim.amp3 = 0
stim.rs = 4

//for writing result files
objref vrec[1]
vrec[0] = new Vector()
{vrec[0].record(&stim.i, dt)}
objref tvec
tvec = new Vector()
{tvec.record(&t, dt)}
objref all
all = new File()
strdef datei

//graph
objref gmem
gmem = new Graph()
gmem.size(0, tstop, -2, 2)
{gmem.addvar("Membrane current", &stim.i, 2, 1)}
gmem.begin()

//defining some functions
proc run_sn() {
    sprint(datei, "fig5currents.txt")
    all.wopen(datei)
    soma v = -55
    finitialize()
    while (t < tstop) {
	fadvance()
	all.printf("%g %g %g %g %g %g %g %g %g %g %g\n", t, cai, jina13_nav13, jina17_nav17, ica, jikdr_kdr, jika_ka, jikcaf_kca_fast, iother2, jikcas_kca_slow, jiih_ih)
	gmem.plot(t)
    }
    gmem.flush()
    all.close
    write_file()
}

proc write_file() {
    sprint(datei, "./fig5mem.txt")
    all.wopen(datei)
    for i=0, vrec[0].size()-1 {
        all.printf("%g %g\n", tvec.x(i), vrec[0].x(i))
    }
    all.close
}

run_sn()
//quit()