Information transmission in cerebellar granule cell models (Rossert et al. 2014)

 Download zip file 
Help downloading and running models
Accession:156733
" ... In this modeling study we analyse how electrophysiological granule cell properties and spike sampling influence information coded by firing rate modulation, assuming no signal-related, i.e., uncorrelated inhibitory feedback (open-loop mode). A detailed one-compartment granule cell model was excited in simulation by either direct current or mossy-fiber synaptic inputs. Vestibular signals were represented as tonic inputs to the flocculus modulated at frequencies up to 20 Hz (approximate upper frequency limit of vestibular-ocular reflex, VOR). Model outputs were assessed using estimates of both the transfer function, and the fidelity of input-signal reconstruction measured as variance-accounted-for. The detailed granule cell model with realistic mossy-fiber synaptic inputs could transmit infoarmation faithfully and linearly in the frequency range of the vestibular-ocular reflex. ... "
Reference:
1 . Rössert C, Solinas S, D'Angelo E, Dean P, Porrill J (2014) Model cerebellar granule cells can faithfully transmit modulated firing rate signals. Front Cell Neurosci 8:304 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum interneuron granule GLU cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Action Potentials; Markov-type model;
Implementer(s): Solinas, Sergio [solinas at unipv.it]; Roessert, Christian [christian.a at roessert.de];
Search NeuronDB for information about:  Cerebellum interneuron granule GLU cell;
TITLE Cerebellum Granule Cell Model

COMMENT
        CaHVA channel
   
	Author: E.D'Angelo, T.Nieus, A. Fontana
	Last revised: 8.5.2000
ENDCOMMENT
 
NEURON { 
	SUFFIX GRANULE_CA 
	USEION ca READ eca WRITE ica 
	RANGE Q10_diff,Q10_channel,gbar_Q10
	RANGE gbar, ica, ic , g, alpha_s, beta_s, alpha_u, beta_u 
	RANGE Aalpha_s, Kalpha_s, V0alpha_s
	RANGE Abeta_s, Kbeta_s, V0beta_s
	RANGE Aalpha_u, Kalpha_u, V0alpha_u
	RANGE Abeta_u, Kbeta_u, V0beta_u
	RANGE s_inf, tau_s, u_inf, tau_u 
} 
 
UNITS { 
	(mA) = (milliamp) 
	(mV) = (millivolt) 
} 
 
PARAMETER { 
	
	Aalpha_s = 0.04944 (/ms)
	Kalpha_s =  15.873 (mV)
	V0alpha_s = -29.06 (mV)
	
	Abeta_s = 0.08298 (/ms)
	Kbeta_s =  -25.641 (mV)
	V0beta_s = -18.66 (mV)
	
	

	Aalpha_u = 0.0013 (/ms)
	Kalpha_u =  -18.183 (mV)
	V0alpha_u = -48 (mV)
		
	Abeta_u = 0.0013 (/ms)
	Kbeta_u =   83.33 (mV)
	V0beta_u = -48 (mV)

	v (mV) 
	Q10_diff	= 1.5
	Q10_channel	= 3
	gbar= 0.00046 (mho/cm2) 
	eca (mV) 
	celsius (degC)
} 

STATE { 
	s 
	u 
} 

ASSIGNED { 
	ica (mA/cm2) 
	ic (mA/cm2) 
	s_inf 
	u_inf 
	tau_s (ms) 
	tau_u (ms) 
	g (mho/cm2) 
	alpha_s (/ms)
	beta_s (/ms)
	alpha_u (/ms)
	beta_u (/ms)
	gbar_Q10 (mho/cm2)
} 
 
INITIAL { 
	gbar_Q10 = gbar*(Q10_diff^((celsius-30)/10))
	rate(v) 
	s = s_inf 
	u = u_inf 
} 
 
BREAKPOINT { 
	SOLVE states METHOD cnexp 
	g = gbar_Q10*s*s*u 
	ica = g*(v - eca) 
	ic = ica
	alpha_s = alp_s(v)
	beta_s = bet_s(v)
	alpha_u = alp_u(v)
	beta_u = bet_u(v)
}
 
DERIVATIVE states { 
	rate(v) 
	s' =(s_inf - s)/tau_s 
	u' =(u_inf - u)/tau_u 
} 
 
FUNCTION alp_s(v(mV))(/ms) { LOCAL Q10
	Q10 = Q10_channel^((celsius-20(degC))/10(degC))
	alp_s = Q10*Aalpha_s*exp((v-V0alpha_s)/Kalpha_s) 
} 
 
FUNCTION bet_s(v(mV))(/ms) { LOCAL Q10
	Q10 = Q10_channel^((celsius-20(degC))/10(degC))
	bet_s = Q10*Abeta_s*exp((v-V0beta_s)/Kbeta_s) 
} 
 
FUNCTION alp_u(v(mV))(/ms) { LOCAL Q10
	Q10 = Q10_channel^((celsius-20(degC))/10(degC))
	alp_u = Q10*Aalpha_u*exp((v-V0alpha_u)/Kalpha_u) 
} 
 
FUNCTION bet_u(v(mV))(/ms) { LOCAL Q10
	Q10 = Q10_channel^((celsius-20(degC))/10(degC))
	bet_u = Q10*Abeta_u*exp((v-V0beta_u)/Kbeta_u) 
} 
 
PROCEDURE rate(v (mV)) {LOCAL a_s, b_s, a_u, b_u 
	TABLE s_inf, tau_s, u_inf, tau_u 
	DEPEND Aalpha_s, Kalpha_s, V0alpha_s, 
	       Abeta_s, Kbeta_s, V0beta_s,
               Aalpha_u, Kalpha_u, V0alpha_u,
               Abeta_u, Kbeta_u, V0beta_u, celsius FROM -100 TO 30 WITH 13000 
	a_s = alp_s(v)  
	b_s = bet_s(v) 
	a_u = alp_u(v)  
	b_u = bet_u(v) 
	s_inf = a_s/(a_s + b_s) 
	tau_s = 1/(a_s + b_s) 
	u_inf = a_u/(a_u + b_u) 
	tau_u = 1/(a_u + b_u) 
}