CA1 pyramidal neuron: synaptic plasticity during theta cycles (Saudargiene et al. 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:157157
This NEURON code implements a microcircuit of CA1 pyramidal neuron and consists of a detailed model of CA1 pyramidal cell and four types of inhibitory interneurons (basket, bistratified, axoaxonic and oriens lacunosum-moleculare cells). Synaptic plasticity during theta cycles at a synapse in a single spine on the stratum radiatum dendrite of the CA1 pyramidal cell is modeled using a phenomenological model of synaptic plasticity (Graupner and Brunel, PNAS 109(20):3991-3996, 2012). The code is adapted from the Poirazi CA1 pyramidal cell (ModelDB accession number 20212) and the Cutsuridis microcircuit model (ModelDB accession number 123815)
Reference:
1 . Saudargiene A, Cobb S, Graham BP (2015) A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus. Hippocampus 25:208-18 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA1 pyramidal cell; Hippocampus CA1 basket cell; Hippocampus CA1 bistratified cell; Hippocampus CA1 axo-axonic cell;
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Long-term Synaptic Plasticity; STDP;
Implementer(s): Saudargiene, Ausra [ausra.saudargiene at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal cell;
/
SaudargieneEtAl2015
readme.html
ANsyn.mod *
bgka.mod *
bistableGB_DOWNUP.mod
burststim2.mod *
cad.mod
cadiffus.mod *
cagk.mod *
cal.mod *
calH.mod *
car.mod *
cat.mod *
ccanl.mod *
d3.mod *
gabaa.mod *
gabab.mod *
glutamate.mod *
gskch.mod *
h.mod
hha_old.mod *
hha2.mod *
hNa.mod *
IA.mod
ichan2.mod
Ih.mod *
kadbru.mod
kadist.mod *
kapbru.mod
kaprox.mod *
Kaxon.mod *
kca.mod *
Kdend.mod *
km.mod *
Ksoma.mod *
LcaMig.mod *
my_exp2syn.mod *
Naaxon.mod *
Nadend.mod *
nap.mod
Nasoma.mod *
nca.mod *
nmda.mod *
nmdaca.mod *
regn_stim.mod *
somacar.mod *
STDPE2Syn.mod *
apical-non-trunk-list.hoc
apical-tip-list.hoc
apical-tip-list-addendum.hoc
apical-trunk-list.hoc
axoaxonic_cell17S.hoc
axon-sec-list.hoc
BasalPath.hoc
basal-paths.hoc
basal-tree-list.hoc
basket_cell17S.hoc
bistratified_cell13S.hoc
burst_cell.hoc
current-balance.hoc *
main.hoc
map-segments-to-3d.hoc *
mod_func.c
mosinit.hoc
ObliquePath.hoc *
oblique-paths.hoc
olm_cell2.hoc
pattsN100S20P5_single.dat
PC.ses
peri-trunk-list.hoc
pyramidalNeuron.hoc
randomLocation.hoc
ranstream.hoc
screenshot.png
soma-list.hoc
stim_cell.hoc *
vector-distance.hoc
                            
COMMENT
A synaptic current with two dual exponential function conductances,
representing non-voltage-dependent AMPA and voltage-dependent NMDA
components.  The basic dual exponential conductance is given by:
         g = 0 for t < onset and
         g = gmax*((tau1*tau2)/(tau1-tau2)) *
                             (exp(-(t-onset)/tau1)-exp(-(t-onset)/tau2))
         for t > onset (tau1 and tau2 are fast and slow time constants)
The synaptic current is:
        i = (gA + gN) * (v - e)      i(nanoamps), g(micromhos);
NMDA model taken from Mel, J. Neurophys. 70:1086-1101, 1993
BPG 1-12-00
ENDCOMMENT
                           
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
    POINT_PROCESS ANSynapse
    RANGE onset, gmax, e, i, g, gA, gN, tau1, tau2, Ntau1, Ntau2, eta, Mg, gamma, Nfrac
    NONSPECIFIC_CURRENT i
}

UNITS {
    (nA) = (nanoamp)
    (mV) = (millivolt)
    (umho) = (micromho)
}

PARAMETER {
    onset=0 (ms)
    tau1=.2 (ms)    <1e-3,1e6>
    tau2=2 (ms)    <1e-3,1e6>
    Nfrac=0.5
    Ntau1=.66 (ms)    <1e-3,1e6>
    Ntau2=80 (ms)    <1e-3,1e6>
    eta=0.33 (/mM)
    Mg=1 (mM)
    gamma=0.06 (/mV)
    gmax=0  (umho)  <0,1e9>
    e=0 (mV)
    v   (mV)
}

ASSIGNED { i (nA)  g (umho) gA (umho) gN (umho) Agmax (umho) Ngmax (umho)}

INITIAL {
    Agmax = (1-Nfrac)*gmax
    Ngmax = Nfrac*gmax
}

BREAKPOINT {
    gA = Agmax*((tau1*tau2)/(tau1-tau2))*duale((t-onset)/tau1,(t-onset)/tau2)
    gN = Ngmax*((Ntau1*Ntau2)/(Ntau1-Ntau2))*duale((t-onset)/Ntau1,(t-onset)/Ntau2)
    gN = gN / (1 + (eta*Mg*exp(-gamma*v)))
    g = gA + gN
    i = g*(v - e)
}

FUNCTION duale(x,y) {
    if (x < 0 || y < 0) {
        duale = 0
    }else{
        duale = exp(-x) - exp(-y)
    }
}