Early-onset epileptic encephalopathy (Miceli et al. 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:170030
Model files from the paper "Early-Onset Epileptic Encephalopathy Caused by Gain-of-Function Mutations in the Voltage Sensor of Kv7.2 and Kv7.3 Potassium Channel Subunits" by Francesco Miceli, Maria Virginia Soldovieri, Paolo Ambrosino, Michela De Maria, Michele Migliore, Rosanna Migliore, and Maurizio Taglialatela J Neurosci. 2015 Mar 4;35(9):3782-93. The file fig7C.hoc reproduces the simulations shown in Fig.7C of the paper.
Reference:
1 . Miceli F, Soldovieri MV, Ambrosino P, De Maria M, Migliore M, Migliore R, Taglialatela M (2015) Early-onset epileptic encephalopathy caused by gain-of-function mutations in the voltage sensor of Kv7.2 and Kv7.3 potassium channel subunits. J Neurosci 35:3782-93 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal cell;
Channel(s): I Na,t; I A; I K; I M; I h;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Epilepsy;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal cell; I Na,t; I A; I K; I M; I h; Glutamate;
/
Kv72_ModelDB
readme.html
h.mod *
kadist.mod *
kamt.mod *
kaprox.mod *
kdrca1.mod *
ks.mod *
kv72wt73wt.mod *
kv72wt73wtR201C.mod
na3n.mod *
naxn.mod *
netstims.mod *
fig7C.hoc
fixnseg.hoc *
geo5038804-S.hoc
mosinit.hoc
olm-t.hoc
screenshot1.png
screenshot2.png
                            
/* Sets nseg in each section to an odd value
   so that its segments are no longer than 
     d_lambda x the AC length constant
   at frequency freq in that section.

   Be sure to specify your own Ra and cm before calling geom_nseg()

   To understand why this works, 
   and the advantages of using an odd value for nseg,
   see  Hines, M.L. and Carnevale, N.T.
        NEURON: a tool for neuroscientists.
        The Neuroscientist 7:123-135, 2001.
*/

// these are reasonable values for most models
freq = 100      // Hz, frequency at which AC length constant will be computed
d_lambda = 0.1

func lambda_f() { local i, x1, x2, d1, d2, lam
        if (n3d() < 2) {
                return 1e5*sqrt(diam/(4*PI*$1*Ra*cm))
        }
// above was too inaccurate with large variation in 3d diameter
// so now we use all 3-d points to get a better approximate lambda
        x1 = arc3d(0)
        d1 = diam3d(0)
        lam = 0
        for i=1, n3d()-1 {
                x2 = arc3d(i)
                d2 = diam3d(i)
                lam += (x2 - x1)/sqrt(d1 + d2)
                x1 = x2   d1 = d2
        }
        //  length of the section in units of lambda
        lam *= sqrt(2) * 1e-5*sqrt(4*PI*$1*Ra*cm)

        return L/lam
}

proc geom_nseg() {
  soma area(0.5) // make sure diam reflects 3d points
  forall { nseg = int((L/(d_lambda*lambda_f(freq))+0.9)/2)*2 + 1  }
}