Long time windows from theta modulated inhib. in entorhinal–hippo. loop (Cutsuridis & Poirazi 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:181967
"A recent experimental study (Mizuseki et al., 2009) has shown that the temporal delays between population activities in successive entorhinal and hippocampal anatomical stages are longer (about 70–80 ms) than expected from axon conduction velocities and passive synaptic integration of feed-forward excitatory inputs. We investigate via computer simulations the mechanisms that give rise to such long temporal delays in the hippocampus structures. ... The model shows that the experimentally reported long temporal delays in the DG, CA3 and CA1 hippocampal regions are due to theta modulated somatic and axonic inhibition..."
Reference:
1 . Cutsuridis V, Poirazi P (2015) A computational study on how theta modulated inhibition can account for the long temporal windows in the entorhinal-hippocampal loop. Neurobiol Learn Mem 120:69-83 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism:
Cell Type(s): Dentate gyrus granule cell; Hippocampus CA1 pyramidal cell; Hippocampus CA3 pyramidal cell; Hippocampus CA3 interneuron basket cell; Dentate gyrus mossy cell; Dentate gyrus basket cell; Dentate gyrus hilar cell; Hippocampus CA1 basket cell; Hippocampus CA3 stratum oriens lacunosum-moleculare interneuron; Hippocampus CA1 bistratified cell; Hippocampus CA1 axo-axonic cell; Hippocampus CA3 axo-axonic cells;
Channel(s): I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I h; I K,Ca; I_AHP;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Pattern Recognition; Temporal Pattern Generation; Spatio-temporal Activity Patterns; Brain Rhythms; Storage/recall;
Implementer(s): Cutsuridis, Vassilis [vcutsuridis at gmail.com];
Search NeuronDB for information about:  Dentate gyrus granule cell; Hippocampus CA1 pyramidal cell; Hippocampus CA3 pyramidal cell; Hippocampus CA3 interneuron basket cell; GabaA; AMPA; NMDA; I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I h; I K,Ca; I_AHP;
/
CutsuridisPoirazi2015
Results
Weights
readme.html
ANsyn.mod *
bgka.mod *
borgkm.mod *
burststim.mod
cacumm.mod *
cad.mod
cadiv.mod *
cagk.mod
cagk2.mod
cagk3.mod
cal.mod *
cal1.mod
cal2.mod
calH.mod *
can2.mod *
can3.mod
car.mod *
cat.mod *
cat2.mod
cat3.mod
ccanl.mod *
distr.mod *
gskch.mod *
h.mod *
h2.mod
hha_old.mod *
hha2.mod *
hNa.mod *
hyperde3.mod *
IA.mod *
ichan2.mod *
Ih.mod *
kad.mod *
kahp.mod *
KahpM95.mod *
kap.mod *
kaprox.mod
Kaxon.mod *
kca.mod *
kd.mod *
Kdend.mod *
kdr.mod *
kdrca1.mod *
km.mod *
km2.mod
Ksoma.mod *
LcaMig.mod *
my_exp2syn.mod *
na3n.mod *
Naaxon.mod *
Nadend.mod *
nahh.mod *
Nasoma.mod *
naxn.mod *
nca.mod *
nmda.mod *
regn_stim.mod *
somacar.mod *
BasketCell.hoc
burst_cell.hoc
CA1AAC.hoc
CA1BC.hoc
CA1BSC.hoc
CA1OLM.hoc
CA1PC.hoc
CA3AAC.hoc
CA3BC.hoc
CA3BSC.hoc
CA3OLM.hoc
CA3PC.hoc
GC.hoc
gui.ses
HC.hoc
MC.hoc
mosinit.hoc
network.hoc
OLM.hoc
ranstream.hoc *
rig.hoc
screenshot.png
stim_cell.hoc
                            
TITLE HH channel that includes both a sodium and a delayed rectifier channel 
: and accounts for sodium conductance attenuation
: Bartlett Mel-modified Hodgkin - Huxley conductances (after Ojvind et al.)
: Terrence Brannon-added attenuation 
: Yiota Poirazi-modified Kdr and Na threshold and time constants to make it more stable
: Yiota Poirazi-modified threshold for soma/axon spike initiation (threshold about -57 mV),
: USC Los Angeles 2000, poirazi@LNC.usc.edu
: This file is used only in soma and axon sections


NEURON {
	SUFFIX hha2
	USEION na READ ena WRITE ina
	USEION k READ ek WRITE ik
	NONSPECIFIC_CURRENT il
	RANGE gnabar, gkbar, gl, el
	RANGE ar2, vhalfs
	RANGE inf, fac, tau
	RANGE taus
	RANGE W
	GLOBAL taumin
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

PARAMETER {                     :parameters that can be entered when function is called in cell-setup
 a0r = 0.0003 (ms)
        b0r = 0.0003 (ms)
        zetar = 12    
	zetas = 12   
        gmr = 0.2   
	ar2 = 1.0               :initialized parameter for location-dependent
                                :Na-conductance attenuation, "s", (ar=1 -> zero attenuation)
	taumin = 3   (ms)       :min activation time for "s" attenuation system
        vvs  = 2     (mV)       :slope for "s" attenuation system
        vhalfr = -60 (mV)       :half potential for "s" attenuation system
	W = 0.016    (/mV)      :this 1/61.5 mV
:	gnabar = 0.2 (mho/cm2)  :suggested conductance values
:	gkbar = 0.12 (mho/cm2)
:	gl = 0.0001  (mho/cm2)
        gnabar = 0   (mho/cm2)  :initialized conductances
	gkbar = 0    (mho/cm2)  :actual values set in cell-setup.hoc
	gl = 0       (mho/cm2)
	ena = 60     (mV)       :Na reversal potential (also reset in
	ek = -77     (mV)       :K reversal potential  cell-setup.hoc)
	el = -70.0   (mV)       :steady state 
	celsius = 34 (degC)
	v            (mV)
        dt
}

STATE {				:the unknown parameters to be solved in the DEs
	m h n s
}

ASSIGNED {			:parameters needed to solve DE
	ina (mA/cm2)
	ik (mA/cm2)
	il (mA/cm2)
	inf[4]
	fac[4]
	tau[4]
}

BREAKPOINT {
	SOLVE states
	ina = gnabar*m*m*h*s*(v - ena) :Sodium current
	ik = gkbar*n*n*(v - ek)        :Potassium current
	il = gl*(v - el)               :leak current
}

INITIAL {			:initialize the following parameter using states()
	states()
	s=1
	ina = gnabar*m*m*h*s*(v - ena)
	ik = gkbar*n*n*(v - ek)
	il = gl*(v - el)
}

PROCEDURE calcg() {
	mhn(v*1(/mV))
	m = m + fac[0]*(inf[0] - m)  :Na activation variable
	h = h + fac[1]*(inf[1] - h)  :Na inactivation variable
	n = n + fac[2]*(inf[2] - n)  :K activation variable
	s = s + fac[3]*(inf[3] - s)  :Na attenuation variable
}	

PROCEDURE states() {	: exact when v held constant
	calcg()
	VERBATIM
	return 0;
	ENDVERBATIM
}

FUNCTION varss(v, i) { :steady state values
	if (i==0) {
                varss = 1 / (1 + exp((v + 44)/(-3)))    :Na activation
 	}
	else if (i==1) {
                varss = 1 / (1 + exp((v + 49)/(3.5)))   :Na inactivation 
	}
	else if (i==2) {	
                varss = 1 / (1 + exp((v + 46.3)/(-3))) :K activation

	} else {
                :"s" activation system for spike attenuation - Migliore 96 model
		varss =     alpv(v,vhalfr)
       }
}

FUNCTION alpv(v(mV),vh) {    :used in "s" activation system infinity calculation
  alpv = (1+ar2*exp((v-vh)/vvs))/(1+exp((v-vh)/vvs))
}

FUNCTION alpr(v(mV)) {       :used in "s" activation system tau
  alpr = exp(1.e-3*zetar*(v-vhalfr)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betr(v(mV)) {       :used in "s" activation system tau
  betr = exp(1.e-3*zetar*gmr*(v-vhalfr)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION vartau(v, i) { :estimate tau values
	LOCAL tmp

	if (i==0) {
	    vartau = 0.05  :Na activation tau
	}
	else if (i==1) {
            vartau = 1     :Na inactivation tau
	}
	else if (i==2) {
            vartau = 3.5   :K activation
       	} else {
	     tmp = betr(v)/(a0r+b0r*alpr(v))
	     if (tmp<taumin) {tmp=taumin}
	VERBATIM
	ENDVERBATIM
	     vartau = tmp   :s activation tau
       }
}	

PROCEDURE mhn(v) {LOCAL a, b :rest = -70
:       TABLE infinity, tau, fac DEPEND dt, celsius FROM -100 TO 100 WITH 200
	FROM i=0 TO 3 {
		tau[i] = vartau(v,i)
		inf[i] = varss(v,i)
		fac[i] = (1 - exp(-dt/tau[i]))
	}
}