CA3 pyramidal neurons: Kv1.2 mediates modulation of cortical inputs (Hyun et al., 2015)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:184139
This model simulates the contribution of dendritic Na+ and D-type K+ channels to EPSPs at three different locations of apical dendrites, which mimicking innervation sites of mossy fibers (MF), recurrent fibers (AC), and perforant pathway (PP).
Reference:
1 . Hyun JH, Eom K, Lee KH, Bae JY, Bae YC, Kim MH, Kim S, Ho WK, Lee SH (2015) Kv1.2 mediates heterosynaptic modulation of direct cortical synaptic inputs in CA3 pyramidal cells. J Physiol 593:3617-43 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA3 pyramidal GLU cell;
Channel(s): I A; I Sodium; I_KD;
Gap Junctions:
Receptor(s):
Gene(s): Kv1.2 KCNA2;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials;
Implementer(s):
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; I A; I Sodium; I_KD;
/
HyunEtAl2015
ReadMe.html
Exp2GluSyn.mod
KaProx.mod
KdBG40.mod
Kdr.mod
KhdM01.mod
Na.mod
E807.hoc
Fig7Bb_(IK_conditioned).hoc
Fig7Bb_(IK_control).hoc
Fig7Bc(Gin).hoc
Fig7C_(AC-EPSP).hoc
Fig7C_(MF-EPSP).hoc
Fig7C_(PP-EPSP).hoc
Fig7D_(AC-EPSP).hoc
Fig7D_(MF-EPSP).hoc
Fig7D_(PP-EPSP).hoc
Fig7E_(control).hoc
Fig7E_(lowGkd).hoc
Fig7E_(lowGkdlowGna).hoc
fixnseg.hoc *
L22.hoc
mosinit.hoc
screenshot.png
                            
load_file("E807.hoc")

/******************************************************************/
// Insert passive & active conductances
/******************************************************************/
Vrest = -70
ins_pasive()
ins_active()
mesh_init()

/******************************************************************/
// Main Setup for EPSP
/******************************************************************/
// Setup synapse
Ndsyn = 1     //No of syn to be stim'd
NAratio = 0.2 // NMDA-to-AMPA ratio
atau = 1.5	// Rise time of I_AMPA
ntau = 16   // decay tau of Inmda
tauD = 100  // Recovery of RRP in ms
tauF = 50   // decay of Af in ms
p0 = 0.2	// basal rls prob.
Af = 1	// postAP facilitation inc / pb
//
taudmf = 20
taufmf = 100
p0mf = 0.05
Afmf = 2
//
ns = new NetStim(0.5)
ns.start = 10 //StimInit
ns.number = 1 //StimN
ns.interval = 20 //StimIntv, 50 Hz
tstop = 4*ns.start + ns.number * ns.interval + 500
//

wt[1] = 5.0e-4/p0mf  // MF, atau*1
wt[2] = 1.0e-4/p0    // AC, atau*1
wt[3] = 1.9e-4/p0    // PP, atau*1

/******************************************************************/
// Run EPSP
/******************************************************************/
//
Ndsyn = 1
synloc = 3        // PP
wtstep = 0.5e-4/p0
//
gheight = 20	  // graph height in mV
graphepsp()
gepsp.begin()
setupsynapse(0)
// control
condkd(1)
condNa(1)

for(nsyn=1; nsyn<9; nsyn+=1) {
	wt[synloc] = wtstep*nsyn
	runsyn(synloc, 1)  //run(synloc, overlap)	
}