Ca+/HCN channel-dependent persistent activity in multiscale model of neocortex (Neymotin et al 2016)

 Download zip file 
Help downloading and running models
Accession:185858
"Neuronal persistent activity has been primarily assessed in terms of electrical mechanisms, without attention to the complex array of molecular events that also control cell excitability. We developed a multiscale neocortical model proceeding from the molecular to the network level to assess the contributions of calcium regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in providing additional and complementary support of continuing activation in the network. ..."
Reference:
1 . Neymotin SA, McDougal RA, Bulanova AS, Zeki M, Lakatos P, Terman D, Hines ML, Lytton WW (2016) Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex Neuroscience 316:344-366 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network; Neuron or other electrically excitable cell; Synapse; Channel/Receptor; Molecular Network;
Brain Region(s)/Organism: Neocortex;
Cell Type(s): Neocortex V1 L6 pyramidal corticothalamic cell; Neocortex V1 L2/6 pyramidal intratelencephalic cell; Neocortex V1 interneuron basket PV cell; Neocortex fast spiking (FS) interneuron; Neocortex spiking regular (RS) neuron; Neocortex spiking low threshold (LTS) neuron; Neocortex layer 2-3 interneuron; Neocortex layer 5 interneuron; Neocortex layer 6a interneuron;
Channel(s): I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I CAN; I Calcium; I_AHP; I_KD; Ca pump;
Gap Junctions:
Receptor(s): mGluR1; GabaA; GabaB; AMPA; NMDA; mGluR; Glutamate; Gaba; IP3;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Ion Channel Kinetics; Oscillations; Spatio-temporal Activity Patterns; Signaling pathways; Working memory; Attractor Neural Network; Calcium dynamics; Laminar Connectivity; G-protein coupled; Rebound firing; Brain Rhythms; Dendritic Bistability; Reaction-diffusion; Beta oscillations; Persistent activity; Multiscale;
Implementer(s): Neymotin, Sam [samn at neurosim.downstate.edu]; McDougal, Robert [robert.mcdougal at yale.edu];
Search NeuronDB for information about:  Neocortex V1 L6 pyramidal corticothalamic cell; Neocortex V1 L2/6 pyramidal intratelencephalic cell; Neocortex V1 interneuron basket PV cell; mGluR1; GabaA; GabaB; AMPA; NMDA; mGluR; Glutamate; Gaba; IP3; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I CAN; I Calcium; I_AHP; I_KD; Ca pump; Gaba; Glutamate;
/
CaHDemo
readme.html
cagk.mod
cal.mod *
calts.mod *
can.mod *
cat.mod *
gabab.mod
IC.mod *
icalts.mod *
Ih.mod
ihlts.mod *
IKM.mod *
kap.mod
kcalts.mod *
kdmc.mod
kdr.mod
kdrbwb.mod
km.mod *
mglur.mod *
misc.mod
MyExp2SynBB.mod *
MyExp2SynNMDABB.mod
nafbwb.mod
nax.mod
vecst.mod *
aux_fun.inc *
conf.py
declist.hoc *
decnqs.hoc *
decvec.hoc *
default.hoc *
drline.hoc *
geom.py
ghk.inc *
grvec.hoc
init.hoc
labels.hoc
labels.py *
local.hoc *
misc.h
mpisim.py
netcfg.cfg
nqs.hoc
nqs.py
nrnoc.hoc *
onepyr.cfg
onepyr.py
pyinit.py *
python.hoc *
pywrap.hoc *
screenshot.png
screenshot1.png
simctrl.hoc *
simdat.py
syncode.hoc *
xgetargs.hoc *
                            
TITLE n-calcium channel
: n-type calcium channel
: MODELDB 126814 CA3 by Safiulina et al - http://senselab.med.yale.edu/modeldb/ShowModel.asp?model=126814
: by Michele Migliore


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

	FARADAY = 96520 (coul)
	R = 8.3134 (joule/degC)
	KTOMV = .0853 (mV/degC)
}

PARAMETER {
	v (mV)
	celsius 		(degC)
	gcanbar=.0003 (mho/cm2)
	ki=.001 (mM)
	cai=50.e-6 (mM)
	cao = 2  (mM)
	q10=5
	mmin = 0.2
	hmin = 3
	a0m =0.03
	zetam = 2
	vhalfm = -14
	gmm=0.1	
}


NEURON {
	SUFFIX can
	USEION ca READ cai,cao WRITE ica
        RANGE gcanbar, ica, gcan       
        RANGE hinf,minf,taum,tauh
}

STATE {
	m h 
}

ASSIGNED {
	ica (mA/cm2)
        gcan  (mho/cm2) 
        minf
        hinf
        taum
        tauh
}

INITIAL {
        rates(v)
        m = minf
        h = hinf
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gcan = gcanbar*m*m*h*h2(cai)
	ica = gcan*ghk(v,cai,cao)

}

UNITSOFF
FUNCTION h2(cai(mM)) {
	h2 = ki/(ki+cai)
}


FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) {
        LOCAL nu,f

        f = KTF(celsius)/2
        nu = v/f
        ghk=-f*(1. - (ci/co)*exp(nu))*efun(nu)
}

FUNCTION KTF(celsius (degC)) (mV) {
        KTF = ((25./293.15)*(celsius + 273.15))
}


FUNCTION efun(z) {
	if (fabs(z) < 1e-4) {
		efun = 1 - z/2
	}else{
		efun = z/(exp(z) - 1)
	}
}

FUNCTION alph(v(mV)) {
	alph = 1.6e-4*exp(-v/48.4)
}

FUNCTION beth(v(mV)) {
	beth = 1/(exp((-v+39.0)/10.)+1.)
}

FUNCTION alpm(v(mV)) {
	alpm = 0.1967*(-1.0*v+19.88)/(exp((-1.0*v+19.88)/10.0)-1.0)
}

FUNCTION betm(v(mV)) {
	betm = 0.046*exp(-v/20.73)
}

FUNCTION alpmt(v(mV)) {
  alpmt = exp(0.0378*zetam*(v-vhalfm)) 
}

FUNCTION betmt(v(mV)) {
  betmt = exp(0.0378*zetam*gmm*(v-vhalfm)) 
}

UNITSON

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rates(v)
        m' = (minf - m)/taum
        h' = (hinf - h)/tauh
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a, b, qt
        qt=q10^((celsius-25)/10)
        a = alpm(v)
        b = 1/(a + betm(v))
        minf = a*b
	taum = betmt(v)/(qt*a0m*(1+alpmt(v)))
	if (taum<mmin/qt) {taum=mmin/qt}
        a = alph(v)
        b = 1/(a + beth(v))
        hinf = a*b
:	tauh=b/qt
	tauh= 80
	if (tauh<hmin) {tauh=hmin}
}