Spikelet generation and AP initiation in a simplified pyr neuron (Michalikova et al. 2017) Fig 3

 Download zip file   Auto-launch 
Help downloading and running models
Accession:206400
The article by Michalikova et al. (2017) explores the generation of spikelets in cortical pyramidal neurons. This package contains code for simulating the model with simplified morphology shown in Figs 3 and S2.
Reference:
1 . Michalikova M, Remme MW, Kempter R (2017) Spikelets in Pyramidal Neurons: Action Potentials Initiated in the Axon Initial Segment That Do Not Activate the Soma. PLoS Comput Biol 13:e1005237 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Axon;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s): I Na,t;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Action Potentials; Electrotonus; Action Potential Initiation; Axonal Action Potentials;
Implementer(s): Michalikova, Martina [tinka.michalikova at gmail.com];
Search NeuronDB for information about:  I Na,t;
TITLE K-DR channel
: from Klee Ficker and Heinemann
: modified to account for Dax et al.
: M.Migliore 1997
: MM: ntaufac added to model faster channel activation


UNITS {
    (mA) = (milliamp)
    (mV) = (millivolt)

}

PARAMETER {
    v (mV)
        ek (mV)     : must be explicitely def. in hoc
    celsius     (degC)
    gbar=.003 (mho/cm2)
   : ntaufac = 1 (1)      : factor that is multiplied with the expression for ntau

        vhalfn=13   (mV)    
        a0n=0.02      (/ms)
        zetan=-3    (1)
        gmn=0.7  (1)
    nmax=2  (1)
    q10=1
}

NEURON {
    SUFFIX kdr
    USEION k READ ek WRITE ik
        RANGE gkdr,gbar, ikdr, vhalfn
    GLOBAL ninf,taun
}

STATE {
    n
}

ASSIGNED {
    ik (mA/cm2)
    ikdr (mA/cm2)
        ninf
        gkdr
        :gbar
        taun
}

BREAKPOINT {
    SOLVE states METHOD cnexp
    gkdr = gbar*n
    ik = gkdr*(v-ek)
    ikdr = gkdr*(v-ek)
    ik = ikdr

}

INITIAL {
    rates(v)    
    n=ninf
}


FUNCTION alpn(v) {
  alpn = exp(1.e-3*zetan*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betn(v) {
  betn = exp(1.e-3*zetan*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rates(v) : ,vhalfn)
        n' = (ninf - n)/taun
}

PROCEDURE rates(v) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-24)/10)
        a = alpn(v)
        ninf = 1/(1+a)
        taun = betn(v)/(qt*a0n*(1+a))
    if (taun<nmax) {taun=nmax}
}