Spikelet generation and AP initiation in a simplified pyr neuron (Michalikova et al. 2017) Fig 3

 Download zip file   Auto-launch 
Help downloading and running models
Accession:206400
The article by Michalikova et al. (2017) explores the generation of spikelets in cortical pyramidal neurons. This package contains code for simulating the model with simplified morphology shown in Figs 3 and S2.
Reference:
1 . Michalikova M, Remme MW, Kempter R (2017) Spikelets in Pyramidal Neurons: Action Potentials Initiated in the Axon Initial Segment That Do Not Activate the Soma. PLoS Comput Biol 13:e1005237 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Axon;
Brain Region(s)/Organism:
Cell Type(s):
Channel(s): I Na,t;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Python;
Model Concept(s): Action Potentials; Electrotonus; Action Potential Initiation; Axonal Action Potentials;
Implementer(s): Michalikova, Martina [tinka.michalikova at gmail.com];
Search NeuronDB for information about:  I Na,t;
TITLE CA1 KM channel from Mala Shah
: M. Migliore June 2006
: MM: from ModelDB  ''CA1 pyramidal neuron: Ih current (Migliore et al. 2012)''

UNITS {
    (mA) = (milliamp)
    (mV) = (millivolt)

}

PARAMETER {
    v       (mV)
    ek
    celsius     (degC)
    gbar=.0001  (mho/cm2)
        vhalfl=-40      (mV)    : MM, V_half of m
    kl=-10
        vhalft=-42      (mV)    : MM, V_half of tau -> no - bell-shaped tau_m !!
        a0t=0.009       (/ms)
        zetat=7     (1)
        gmt=.4      (1)
    q10=5
    b0=60
    st=1
}


NEURON {
    SUFFIX km
    USEION k READ ek WRITE ik
        RANGE  gbar,ik, vhalfl, vhalft
      GLOBAL inf, tau
}

STATE {
        m
}

ASSIGNED {
    ik (mA/cm2)
        inf
    tau
        taua
    taub
}

INITIAL {
    rate(v)
    m=inf
}


BREAKPOINT {
    SOLVE state METHOD cnexp
    ik = gbar*m^st*(v-ek)
}


FUNCTION alpt(v(mV)) {
  alpt = exp(0.0378*zetat*(v-vhalft)) 
}

FUNCTION bett(v(mV)) {
  bett = exp(0.0378*zetat*gmt*(v-vhalft)) 
}

DERIVATIVE state {
        rate(v)
:        if (m<inf) {tau=taua} else {tau=taub}
    m' = (inf - m)/tau
}

PROCEDURE rate(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-35)/10)
        inf = (1/(1 + exp((v-vhalfl)/kl)))
        a = alpt(v)
        tau = b0 + bett(v)/(a0t*(1+a))
:        taua = 50
:        taub = 300
}