Mechanisms of fast rhythmic bursting in a layer 2/3 cortical neuron (Traub et al 2003)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:20756
This simulation is based on the reference paper listed below. This port was made by Roger D Traub and Maciej T Lazarewicz (mlazarew at seas.upenn.edu) Thanks to Ashlen P Reid for help with porting a morphology of the cell.
Reference:
1 . Traub RD, Buhl EH, Gloveli T, Whittington MA (2003) Fast rhythmic bursting can be induced in layer 2/3 cortical neurons by enhancing persistent Na+ conductance or by blocking BK channels. J Neurophysiol 89:909-21 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L2/3 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I h; I K,Ca; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Bursting; Active Dendrites; Detailed Neuronal Models; Axonal Action Potentials; Calcium dynamics;
Implementer(s): Lazarewicz, Maciej [mlazarew at gmu.edu]; Traub, Roger D ;
Search NeuronDB for information about:  Neocortex L2/3 pyramidal GLU cell; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I h; I K,Ca; I Sodium; I Calcium; I Potassium;
TITLE Potasium Type K2 current for RD Traub, J Neurophysiol 89:909-921, 2003

COMMENT

	Implemented by Maciej Lazarewicz 2003 (mlazarew@seas.upenn.edu)

ENDCOMMENT

INDEPENDENT { t FROM 0 TO 1 WITH 1 (ms) }

UNITS { 
	(mV) = (millivolt) 
	(mA) = (milliamp) 
} 
NEURON { 
	SUFFIX k2
	USEION k READ ek WRITE ik
	RANGE gbar, ik
}
PARAMETER { 
	gbar = 0.0 	(mho/cm2)
	v ek 		(mV)  
} 
ASSIGNED { 
	ik 		(mA/cm2) 
	minf hinf 	(1)
	mtau htau 	(ms) 
} 
STATE {
	m h
}
BREAKPOINT { 
	SOLVE states METHOD cnexp
	ik = gbar * m * h * ( v - ek ) 
} 
INITIAL { 
	settables(v) 
	m  = minf
	m  = 0
	h  = hinf
} 
DERIVATIVE states { 
	settables(v)  
	m' = ( minf - m ) / mtau 
	h' = ( hinf - h ) / htau
}

UNITSOFF 

PROCEDURE settables(v) { 
	TABLE minf, hinf, mtau, htau  FROM -120 TO 40 WITH 641

	minf  = 1 / ( 1 + exp( ( - v - 10 ) / 17 ) )
	mtau  = 4.95 + 0.5 / ( exp( ( v - 81 ) / 25.6 ) + exp( ( - v - 132 ) / 18 ) )
	hinf  = 1 / ( 1 + exp( ( v + 58 ) / 10.6 ) )
	htau  = 60 + 0.5 / ( exp( ( v - 1.33 ) / 200 ) + exp( ( - v - 130 ) / 7.1 ) )
}

UNITSON