Synaptic integration by MEC neurons (Justus et al. 2017)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:222359
Pyramidal cells, stellate cells and fast-spiking interneurons receive running speed dependent glutamatergic input from septo-entorhinal projections. These models simulate the integration of this input by the different MEC celltypes.
Reference:
1 . Justus D, Dalügge D, Bothe S, Fuhrmann F, Hannes C, Kaneko H, Friedrichs D, Sosulina L, Schwarz I, Elliott DA, Schoch S, Bradke F, Schwarz MK, Remy S (2017) Glutamatergic synaptic integration of locomotion speed via septoentorhinal projections. Nat Neurosci 20:16-19 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Entorhinal cortex;
Cell Type(s): Entorhinal cortex pyramidal cell; Entorhinal cortex stellate cell; Entorhinal cortex fast-spiking interneuron;
Channel(s): I K; I Na,t; I h;
Gap Junctions:
Receptor(s): AMPA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Synaptic Integration; Simplified Models;
Implementer(s): Justus, Daniel [daniel.justus at dzne.de];
Search NeuronDB for information about:  AMPA; I Na,t; I K; I h; Glutamate;
/
NEURON_mEC
data
README.html
exp2syn_depress.mod
h.mod *
kap.mod *
kdr.mod *
nax.mod
vecevent.mod *
cinit.hoc
EPSPparam.hoc
GUI.hoc
GUIfunctions.hoc
init.hoc
insert_noise_Syn.hoc
insert_real_Syn.hoc
insertsyn.hoc
morphology.hoc
mosinit.hoc *
Parameters.hoc
run_real_input.hoc
screenshot1.png
screenshot2.png
screenshot3.png
Voltage.ses
                            
TITLE I-h channel from Magee 1998 for distal dendrites
: default values are for dendrites and low Na
: plus leakage, M.Migliore Mar 2010

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v 		(mV)
        ehd  		(mV)        
	celsius 	(degC)
	ghdbar=.0001 	(mho/cm2)
        vhalfl=-90   	(mV)
        vhalft=-75   	(mV)
        a0t=0.0046      	(/ms)
        zetal=4    	(1)
        zetat=2.2    	(1)
        gmt=.4   	(1)
	q10=4.5
	qtl=1
	clk=0
	elk = -70 (mV)
}


NEURON {
	THREADSAFE SUFFIX hd
	NONSPECIFIC_CURRENT i
	NONSPECIFIC_CURRENT lk
        RANGE ghdbar, vhalfl, elk, clk, glk
        GLOBAL linf,taul
}


STATE {
        l
}

ASSIGNED {
	i (mA/cm2)
	lk (mA/cm2)
        linf      
        taul
        ghd
	glk
}

INITIAL {
	rate(v)
	l=linf
}


BREAKPOINT {
	SOLVE states METHOD cnexp
	ghd = ghdbar*l
	i = ghd*(v-ehd)
	lk = clk*ghdbar*(v-elk)
}


FUNCTION alpl(v(mV)) {
  alpl = exp(0.0378*zetal*(v-vhalfl)) 
}

FUNCTION alpt(v(mV)) {
  alpt = exp(0.0378*zetat*(v-vhalft)) 
}

FUNCTION bett(v(mV)) {
  bett = exp(0.0378*zetat*gmt*(v-vhalft)) 
}

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rate(v)
        l' =  (linf - l)/taul
}

PROCEDURE rate(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-33)/10)
        a = alpt(v)
        linf = 1/(1+ alpl(v))
        taul = bett(v)/(qtl*qt*a0t*(1+a))
}