Hierarchical Gaussian Filter (HGF) model of conditioned hallucinations task (Powers et al 2017)

 Download zip file 
Help downloading and running models
Accession:229278
This is an instantiation of the Hierarchical Gaussian Filter (HGF) model for use with the Conditioned Hallucinations Task.
Reference:
1 . Powers AR, Mathys C, Corlett PR (2017) Pavlovian conditioning-induced hallucinations result from overweighting of perceptual priors. Science 357:596-600 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type:
Brain Region(s)/Organism:
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: MATLAB;
Model Concept(s): Hallucinations;
Implementer(s): Powers, Al [albert.powers at yale.edu]; Mathys, Chris H ;
/
HGF
analysis
hgfToolBox_condhalluc1.4
README
COPYING *
example_binary_input.txt
example_categorical_input.mat
example_usdchf.txt
Manual.pdf
tapas_autocorr.m
tapas_bayes_optimal.m
tapas_bayes_optimal_binary.m
tapas_bayes_optimal_binary_config.m
tapas_bayes_optimal_binary_transp.m
tapas_bayes_optimal_categorical.m
tapas_bayes_optimal_categorical_config.m
tapas_bayes_optimal_categorical_transp.m
tapas_bayes_optimal_config.m
tapas_bayes_optimal_transp.m
tapas_bayes_optimal_whatworld.m
tapas_bayes_optimal_whatworld_config.m
tapas_bayes_optimal_whatworld_transp.m
tapas_bayes_optimal_whichworld.m
tapas_bayes_optimal_whichworld_config.m
tapas_bayes_optimal_whichworld_transp.m
tapas_bayesian_parameter_average.m
tapas_beta_obs.m
tapas_beta_obs_config.m
tapas_beta_obs_namep.m
tapas_beta_obs_sim.m
tapas_beta_obs_transp.m
tapas_boltzmann.m
tapas_cdfgaussian_obs.m
tapas_cdfgaussian_obs_config.m
tapas_cdfgaussian_obs_transp.m
tapas_condhalluc_obs.m
tapas_condhalluc_obs_config.m
tapas_condhalluc_obs_namep.m
tapas_condhalluc_obs_sim.m
tapas_condhalluc_obs_transp.m
tapas_condhalluc_obs2.m
tapas_condhalluc_obs2_config.m
tapas_condhalluc_obs2_namep.m
tapas_condhalluc_obs2_sim.m
tapas_condhalluc_obs2_transp.m
tapas_Cov2Corr.m
tapas_datagen_categorical.m
tapas_fit_plotCorr.m
tapas_fit_plotResidualDiagnostics.m
tapas_fitModel.m
tapas_gaussian_obs.m
tapas_gaussian_obs_config.m
tapas_gaussian_obs_namep.m
tapas_gaussian_obs_sim.m
tapas_gaussian_obs_transp.m
tapas_hgf.m
tapas_hgf_ar1.m
tapas_hgf_ar1_binary.m
tapas_hgf_ar1_binary_config.m
tapas_hgf_ar1_binary_namep.m
tapas_hgf_ar1_binary_plotTraj.m
tapas_hgf_ar1_binary_transp.m
tapas_hgf_ar1_config.m
tapas_hgf_ar1_mab.m
tapas_hgf_ar1_mab_config.m
tapas_hgf_ar1_mab_plotTraj.m
tapas_hgf_ar1_mab_transp.m
tapas_hgf_ar1_namep.m
tapas_hgf_ar1_plotTraj.m
tapas_hgf_ar1_transp.m
tapas_hgf_binary.m
tapas_hgf_binary_condhalluc_plotTraj.m
tapas_hgf_binary_config.m
tapas_hgf_binary_config_startpoints.m
tapas_hgf_binary_mab.m
tapas_hgf_binary_mab_config.m
tapas_hgf_binary_mab_plotTraj.m
tapas_hgf_binary_mab_transp.m
tapas_hgf_binary_namep.m
tapas_hgf_binary_plotTraj.m
tapas_hgf_binary_pu.m
tapas_hgf_binary_pu_config.m
tapas_hgf_binary_pu_namep.m
tapas_hgf_binary_pu_tbt.m
tapas_hgf_binary_pu_tbt_config.m
tapas_hgf_binary_pu_tbt_namep.m
tapas_hgf_binary_pu_tbt_transp.m
tapas_hgf_binary_pu_transp.m
tapas_hgf_binary_transp.m
tapas_hgf_categorical.m
tapas_hgf_categorical_config.m
tapas_hgf_categorical_namep.m
tapas_hgf_categorical_norm.m
tapas_hgf_categorical_norm_config.m
tapas_hgf_categorical_norm_transp.m
tapas_hgf_categorical_plotTraj.m
tapas_hgf_categorical_transp.m
tapas_hgf_config.m
tapas_hgf_demo.m
tapas_hgf_demo_commands.m
tapas_hgf_jget.m
tapas_hgf_jget_config.m
tapas_hgf_jget_plotTraj.m
tapas_hgf_jget_transp.m
tapas_hgf_namep.m
tapas_hgf_plotTraj.m
tapas_hgf_transp.m
tapas_hgf_whatworld.m
tapas_hgf_whatworld_config.m
tapas_hgf_whatworld_namep.m
tapas_hgf_whatworld_plotTraj.m
tapas_hgf_whatworld_transp.m
tapas_hgf_whichworld.m
tapas_hgf_whichworld_config.m
tapas_hgf_whichworld_namep.m
tapas_hgf_whichworld_plotTraj.m
tapas_hgf_whichworld_transp.m
tapas_hhmm.m
tapas_hhmm_binary_displayResults.m
tapas_hhmm_config.m
tapas_hhmm_transp.m
tapas_hmm.m
tapas_hmm_binary_displayResults.m
tapas_hmm_config.m
tapas_hmm_transp.m
tapas_kf.m
tapas_kf_config.m
tapas_kf_namep.m
tapas_kf_plotTraj.m
tapas_kf_transp.m
tapas_logit.m
tapas_logrt_linear_binary.m
tapas_logrt_linear_binary_config.m
tapas_logrt_linear_binary_minimal.m
tapas_logrt_linear_binary_minimal_config.m
tapas_logrt_linear_binary_minimal_transp.m
tapas_logrt_linear_binary_namep.m
tapas_logrt_linear_binary_sim.m
tapas_logrt_linear_binary_transp.m
tapas_logrt_linear_whatworld.m
tapas_logrt_linear_whatworld_config.m
tapas_logrt_linear_whatworld_transp.m
tapas_ph_binary.m
tapas_ph_binary_config.m
tapas_ph_binary_namep.m
tapas_ph_binary_plotTraj.m
tapas_ph_binary_transp.m
tapas_quasinewton_optim.m
tapas_quasinewton_optim_config.m
tapas_riddersdiff.m
tapas_riddersdiff2.m
tapas_riddersdiffcross.m
tapas_riddersgradient.m
tapas_riddershessian.m
tapas_rs_belief.m
tapas_rs_belief_config.m
tapas_rs_precision.m
tapas_rs_precision_config.m
tapas_rs_precision_whatworld.m
tapas_rs_precision_whatworld_config.m
tapas_rs_surprise.m
tapas_rs_surprise_config.m
tapas_rs_transp.m
tapas_rs_whatworld_transp.m
tapas_rw_binary.m
tapas_rw_binary_config.m
tapas_rw_binary_dual.m
tapas_rw_binary_dual_config.m
tapas_rw_binary_dual_plotTraj.m
tapas_rw_binary_dual_transp.m
tapas_rw_binary_namep.m
tapas_rw_binary_plotTraj.m
tapas_rw_binary_transp.m
tapas_sgm.m
tapas_simModel.m
tapas_softmax.m
tapas_softmax_2beta.m
tapas_softmax_2beta_config.m
tapas_softmax_2beta_transp.m
tapas_softmax_binary.m
tapas_softmax_binary_config.m
tapas_softmax_binary_namep.m
tapas_softmax_binary_sim.m
tapas_softmax_binary_transp.m
tapas_softmax_config.m
tapas_softmax_namep.m
tapas_softmax_sim.m
tapas_softmax_transp.m
tapas_squared_pe.m
tapas_squared_pe_config.m
tapas_squared_pe_transp.m
tapas_sutton_k1_binary.m
tapas_sutton_k1_binary_config.m
tapas_sutton_k1_binary_plotTraj.m
tapas_sutton_k1_binary_transp.m
tapas_unitsq_sgm.m
tapas_unitsq_sgm_config.m
tapas_unitsq_sgm_mu3.m
tapas_unitsq_sgm_mu3_config.m
tapas_unitsq_sgm_mu3_transp.m
tapas_unitsq_sgm_namep.m
tapas_unitsq_sgm_sim.m
tapas_unitsq_sgm_transp.m
                            
function tapas_hgf_plotTraj(r)
% Plots the estimated or generated trajectories for the HGF perceptual model
% Usage example:  est = tapas_fitModel(responses, inputs); tapas_hgf_plotTraj(est);
%
% --------------------------------------------------------------------------------------------------
% Copyright (C) 2012-2013 Christoph Mathys, TNU, UZH & ETHZ
%
% This file is part of the HGF toolbox, which is released under the terms of the GNU General Public
% Licence (GPL), version 3. You can redistribute it and/or modify it under the terms of the GPL
% (either version 3 or, at your option, any later version). For further details, see the file
% COPYING or <http://www.gnu.org/licenses/>.

% Optional plotting of standard deviations (true or false)
plotsd = true;

% Set up display
scrsz = get(0,'screenSize');
outerpos = [0.2*scrsz(3),0.2*scrsz(4),0.8*scrsz(3),0.8*scrsz(4)];
figure(...
    'OuterPosition', outerpos,...
    'Name', 'HGF trajectories');

% Time axis
if size(r.u,2) > 1 && ~isempty(find(strcmp(fieldnames(r.c_prc),'irregular_intervals'))) && r.c_prc.irregular_intervals
    t = r.u(:,end)';
else
    t = ones(1,size(r.u,1));
end

ts = cumsum(t);
ts = [0, ts];

% Number of levels
l = length(r.p_prc.p)/5;

% Upper levels
for j = 1:l-1

    % Subplots
    subplot(l,1,j);

    if plotsd == true
        upperprior = r.p_prc.mu_0(l-j+1) +sqrt(r.p_prc.sa_0(l-j+1));
        lowerprior = r.p_prc.mu_0(l-j+1) -sqrt(r.p_prc.sa_0(l-j+1));
        upper = [upperprior; r.traj.mu(:,l-j+1)+sqrt(r.traj.sa(:,l-j+1))];
        lower = [lowerprior; r.traj.mu(:,l-j+1)-sqrt(r.traj.sa(:,l-j+1))];
    
        plot(0, upperprior, 'ob', 'LineWidth', 1);
        hold all;
        plot(0, lowerprior, 'ob', 'LineWidth', 1);
        fill([ts, fliplr(ts)], [(upper)', fliplr((lower)')], ...
             'b', 'EdgeAlpha', 0, 'FaceAlpha', 0.15);
    end
    plot(ts, [r.p_prc.mu_0(l-j+1); r.traj.mu(:,l-j+1)], 'b', 'LineWidth', 2);
    hold all;
    plot(0, r.p_prc.mu_0(l-j+1), 'ob', 'LineWidth', 2); % prior
    xlim([0 ts(end)]);
    title(['Posterior expectation of x_' num2str(l-j+1)], 'FontWeight', 'bold');
    ylabel(['\mu_', num2str(l-j+1)]);
end


% Input level
subplot(l,1,l);

if plotsd == true
    upperprior = r.p_prc.mu_0(1) +sqrt(r.p_prc.sa_0(1));
    lowerprior = r.p_prc.mu_0(1) -sqrt(r.p_prc.sa_0(1));
    upper = [upperprior; r.traj.mu(:,1)+sqrt(r.traj.sa(:,1))];
    lower = [lowerprior; r.traj.mu(:,1)-sqrt(r.traj.sa(:,1))];
    
    plot(0, upperprior, 'or', 'LineWidth', 1);
    hold all;
    plot(0, lowerprior, 'or', 'LineWidth', 1);
    fill([ts, fliplr(ts)], [(upper)', fliplr((lower)')], ...
         'r', 'EdgeAlpha', 0, 'FaceAlpha', 0.15);
end
plot(ts, [r.p_prc.mu_0(1); r.traj.mu(:,1)], 'r', 'LineWidth', 2);
hold all;
plot(0, r.p_prc.mu_0(1), 'or', 'LineWidth', 2); % prior
plot(ts(2:end), r.u(:,1), '.', 'Color', [0 0.6 0]); % inputs
if ~isempty(find(strcmp(fieldnames(r),'y'))) && ~isempty(r.y)
    plot(ts(2:end), r.y(:,1), '.', 'Color', [1 0.7 0]); % responses
    title(['Response y (orange), input u (green), and posterior expectation of x_1 ', ...
           '(red) for \rho=', num2str(r.p_prc.rho), ', \kappa=', ...
           num2str(r.p_prc.ka), ', \omega=', num2str(r.p_prc.om), ...
           ', \pi_u=', num2str(r.p_prc.pi_u)], ...
          'FontWeight', 'bold');
    ylabel('y, u, \mu_1');
else
    title(['Input u (green) and posterior expectation of x_1 ', ...
           '(red) for \rho=', num2str(r.p_prc.rho), ', \kappa=', ...
           num2str(r.p_prc.ka), ', \omega=', num2str(r.p_prc.om), ...
           ', \pi_u=', num2str(r.p_prc.pi_u)], ...
          'FontWeight', 'bold');
    ylabel('u, \mu_1');
end
xlim([0 ts(end)]);
xlabel({'Trial number', ' '}); % A hack to get the relative subplot sizes right
hold off;