Model of the cerebellar granular network (Sudhakar et al 2017)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:232023
"The granular layer, which mainly consists of granule and Golgi cells, is the first stage of the cerebellar cortex and processes spatiotemporal information transmitted by mossy fiber inputs with a wide variety of firing patterns. To study its dynamics at multiple time scales in response to inputs approximating real spatiotemporal patterns, we constructed a large-scale 3D network model of the granular layer. ..."
Reference:
1 . Sudhakar SK, Hong S, Raikov I, Publio R, Lang C, Close T, Guo D, Negrello M, De Schutter E (2017) Spatiotemporal network coding of physiological mossy fiber inputs by the cerebellar granular layer. PLoS Comput Biol 13:e1005754 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Cerebellum;
Cell Type(s): Cerebellum golgi cell;
Channel(s): I A; I Calcium; I K; I K,Ca; I Na,t; I h; I Na,p; I T low threshold;
Gap Junctions: Gap junctions;
Receptor(s): AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s): Glutamate; Gaba;
Simulation Environment: NEURON;
Model Concept(s): Spatio-temporal Activity Patterns; Oscillations; Synchronization; Winner-take-all;
Implementer(s): Hong, Sungho [shhong at oist.jp]; Guo, Daqing [dqguo at uestc.edu.cn]; Raikov, Ivan [ivan.g.raikov at gmail.com]; Publio, Rodrigo [publio at oist.jp]; De Schutter, Erik [erik at oist.jp];
Search NeuronDB for information about:  AMPA; NMDA; Gaba; I Na,p; I Na,t; I T low threshold; I A; I K; I h; I K,Ca; I Calcium; Gaba; Glutamate;
// Template for connections from cerebellar Golgi to granule cells
//
// Written by Shyam Kumar Sudhakar, Ivan Raikov, Tom Close, Rodrigo Publio, Daqing Guo, and Sungho Hong
// Computational Neuroscience Unit, Okinawa Institute of Science and Technology, Japan
// Supervisor: Erik De Schutter
//
// Correspondence: Sungho Hong (shhong@oist.jp)
//
// September 16, 2017

begintemplate GoCtoGC
external GranulePop,GolgiPop,MossyPop,numDendGolgi,step_time,gseed,CV_gmax
objref  inhNCelem,pc,r

proc init() { local i,j,count,gocid localobj nc,ncm,cell,gc

    print "Connecting GoCtoGC"

    numGC  = GranulePop.nCells
    numGoC = GolgiPop.nCells
    nD     = numDendGolgi

    p      = 1
    mGABA  = 100e-6
    SDGABA = mGABA*CV_gmax
    del    = 20
    thresh = -10

    pc = new ParallelContext()
    objref inhNCelem
    inhNCelem = new List()
    r = new Random(gseed)
    r.uniform(0,nD-1)

    if (p==1) {

    // Inhibitory GoC to GC connections according rules defined by enPassage

    for (i=pc.id; i < numGC; i +=pc.nhost) {

        cell = pc.gid2cell(i+GranulePop.startindex)

        if (cell.GoCID.size()>1) { // At least 1 GoC connection

        for j=0, cell.GoCID.size()-1 {

            gocid = cell.GoCID.x(j)
            gc    = cell.gaba.object(0)

            nc    = pc.gid_connect(gocid, gc)

            if (cell.GoCdel.x(j)<=step_time) {
                nc.delay=step_time+step_time/10
            }else{
                nc.delay=cell.GoCdel.x(j)
            }

            w1 = r.normal(mGABA*8/cell.GoCID.size(), SDGABA*SDGABA*8/cell.GoCID.size())

            nc.weight = w1

            inhNCelem.append(nc)

        }
        }
    }

    }//if p

} // end init
endtemplate GoCtoGC

objref ncGoCtoGC[1]
ncGoCtoGC[0] = new GoCtoGC()