Knox implementation of Destexhe 1998 spike and wave oscillation model (Knox et al 2018)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:234233
" ...The aim of this study was to use an established thalamocortical computer model to determine how T-type calcium channels work in concert with cortical excitability to contribute to pathogenesis and treatment response in CAE. METHODS: The model is comprised of cortical pyramidal, cortical inhibitory, thalamocortical relay, and thalamic reticular single-compartment neurons, implemented with Hodgkin-Huxley model ion channels and connected by AMPA, GABAA , and GABAB synapses. Network behavior was simulated for different combinations of T-type calcium channel conductance, inactivation time, steady state activation/inactivation shift, and cortical GABAA conductance. RESULTS: Decreasing cortical GABAA conductance and increasing T-type calcium channel conductance converted spindle to spike and wave oscillations; smaller changes were required if both were changed in concert. In contrast, left shift of steady state voltage activation/inactivation did not lead to spike and wave oscillations, whereas right shift reduced network propensity for oscillations of any type...."
Reference:
1 . Knox AT, Glauser T, Tenney J, Lytton WW, Holland K (2018) Modeling pathogenesis and treatment response in childhood absence epilepsy. Epilepsia 59:135-145 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Neocortex; Thalamus;
Cell Type(s): Thalamus reticular nucleus GABA cell; Thalamus geniculate nucleus/lateral principal GLU cell; Hodgkin-Huxley neuron; Neocortex layer 4 pyramidal cell; Neocortex fast spiking (FS) interneuron;
Channel(s): I h; I Na,t; I K,leak; I T low threshold; I M;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Spindles; Oscillations;
Implementer(s): Knox, Andrew [knox at neurology.wisc.edu]; Destexhe, Alain [Destexhe at iaf.cnrs-gif.fr];
Search NeuronDB for information about:  Thalamus geniculate nucleus/lateral principal GLU cell; Thalamus reticular nucleus GABA cell; GabaA; GabaB; AMPA; I Na,t; I T low threshold; I K,leak; I M; I h;
/
KnoxEtAl2017
README.html
README_.txt
ampa.mod
cadecay.mod *
gabaa.mod
gabab.mod
HH2.mod *
Ih.mod *
IM.mod
IT.mod *
IT2.mod *
ITREcustom.mod
kleak.mod *
vecevent.mod
Fsinglecell.oc
Fspikewave.oc
membrane_potential_heat_plot.py
mosinit.hoc *
RE.tem
rundemo.hoc
screenshot1.png
screenshot2.png
screenshot3.png
sIN.tem
sPY.tem
TC.tem
                            
TITLE Hippocampal HH channels
:
: Fast Na+ and K+ currents responsible for action potentials
: Iterative equations
:
: Equations modified by Traub, for Hippocampal Pyramidal cells, in:
: Traub & Miles, Neuronal Networks of the Hippocampus, Cambridge, 1991
:
: range variable vtraub adjust threshold
:
: Written by Alain Destexhe, Salk Institute, Aug 1992
:
: Modified Oct 96 for compatibility with Windows: trap low values of arguments
:

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX hh2
	USEION na READ ena WRITE ina
	USEION k READ ek WRITE ik
	RANGE gnabar, gkbar, vtraub
	RANGE m_inf, h_inf, n_inf
	RANGE tau_m, tau_h, tau_n
	RANGE m_exp, h_exp, n_exp
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

PARAMETER {
	gnabar  = .003  (mho/cm2)
	gkbar   = .005  (mho/cm2)

	ena     = 50    (mV)
	ek      = -90   (mV)
	celsius = 36    (degC)
	dt              (ms)
	v               (mV)
	vtraub  = -63   (mV)
}

STATE {
	m h n
}

ASSIGNED {
	ina     (mA/cm2)
	ik      (mA/cm2)
	il      (mA/cm2)
	m_inf
	h_inf
	n_inf
	tau_m
	tau_h
	tau_n
	m_exp
	h_exp
	n_exp
	tadj
}


BREAKPOINT {
	SOLVE states
	ina = gnabar * m*m*m*h * (v - ena)
	ik  = gkbar * n*n*n*n * (v - ek)
}


:DERIVATIVE states {   : exact Hodgkin-Huxley equations
:       evaluate_fct(v)
:       m' = (m_inf - m) / tau_m
:       h' = (h_inf - h) / tau_h
:       n' = (n_inf - n) / tau_n
:}

PROCEDURE states() {    : exact when v held constant
	evaluate_fct(v)
	m = m + m_exp * (m_inf - m)
	h = h + h_exp * (h_inf - h)
	n = n + n_exp * (n_inf - n)
	VERBATIM
	return 0;
	ENDVERBATIM
}

UNITSOFF
INITIAL {
:
:  Q10 was assumed to be 3 for both currents
:
	tadj = 3.0 ^ ((celsius-36)/ 10 )

	m = 0
	h = 0
	n = 0
}

PROCEDURE evaluate_fct(v(mV)) { LOCAL a,b,v2

	v2 = v - vtraub : convert to traub convention

:       a = 0.32 * (13-v2) / ( Exp((13-v2)/4) - 1)
	a = 0.32 * vtrap(13-v2, 4)
:       b = 0.28 * (v2-40) / ( Exp((v2-40)/5) - 1)
	b = 0.28 * vtrap(v2-40, 5)
	tau_m = 1 / (a + b) / tadj
	m_inf = a / (a + b)

	a = 0.128 * Exp((17-v2)/18)
	b = 4 / ( 1 + Exp((40-v2)/5) )
	tau_h = 1 / (a + b) / tadj
	h_inf = a / (a + b)

:       a = 0.032 * (15-v2) / ( Exp((15-v2)/5) - 1)
	a = 0.032 * vtrap(15-v2, 5)
	b = 0.5 * Exp((10-v2)/40)
	tau_n = 1 / (a + b) / tadj
	n_inf = a / (a + b)

	m_exp = 1 - Exp(-dt/tau_m)
	h_exp = 1 - Exp(-dt/tau_h)
	n_exp = 1 - Exp(-dt/tau_n)
}
FUNCTION vtrap(x,y) {
	if (fabs(x/y) < 1e-6) {
		vtrap = y*(1 - x/y/2)
	}else{
		vtrap = x/(Exp(x/y)-1)
	}
}

FUNCTION Exp(x) {
	if (x < -100) {
		Exp = 0
	}else{
		Exp = exp(x)
	}
}