Parallel odor processing by mitral and middle tufted cells in the OB (Cavarretta et al 2016, 2018)

 Download zip file   Auto-launch 
Help downloading and running models
"[...] experimental findings suggest that MC and mTC may encode parallel and complementary odor representations. We have analyzed the functional roles of these pathways by using a morphologically and physiologically realistic three-dimensional model to explore the MC and mTC microcircuits in the glomerular layer and deeper plexiform layers. [...]"
1 . Cavarretta F, Burton SD, Igarashi KM, Shepherd GM, Hines ML, Migliore M (2018) Parallel odor processing by mitral and middle tufted cells in the olfactory bulb. Sci Rep 8:7625 [PubMed]
2 . Cavarretta F, Marasco A, Hines ML, Shepherd GM, Migliore M (2016) Glomerular and Mitral-Granule Cell Microcircuits Coordinate Temporal and Spatial Information Processing in the Olfactory Bulb. Front Comput Neurosci 10:67 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main tufted middle cell; Olfactory bulb main interneuron granule MC cell; Olfactory bulb main interneuron granule TC cell; Olfactory bulb (accessory) mitral cell; Olfactory bulb main tufted cell external; Olfactory bulb short axon cell;
Channel(s): I A; I Na,t; I_Ks; I K;
Gap Junctions: Gap junctions;
Receptor(s): AMPA; GabaA; NMDA;
Transmitter(s): Glutamate; Gaba;
Simulation Environment: NEURON;
Model Concept(s): Action Potentials; Action Potential Initiation; Active Dendrites; Long-term Synaptic Plasticity; Synaptic Integration; Synchronization; Pattern Recognition; Spatio-temporal Activity Patterns; Temporal Pattern Generation; Sensory coding; Sensory processing; Olfaction;
Implementer(s): Cavarretta, Francesco [francescocavarretta at]; Hines, Michael [Michael.Hines at];
Search NeuronDB for information about:  Olfactory bulb main interneuron granule MC cell; Olfactory bulb main tufted middle cell; Olfactory bulb main interneuron granule TC cell; GabaA; AMPA; NMDA; I Na,t; I A; I K; I_Ks; Gaba; Glutamate;
distrt.mod *
fi_stdp.mod *
ThreshDetect.mod * * *
blanes6.dic * *
Eta.txt *
fixnseg.hoc *
gj_nrn.hoc *
granule.hoc *
Kod.txt * * * *
Nod.txt *
odstim2.txt *
pad.txt *
realgloms.txt *
spike2file.hoc * *
from util import *
from all2all import all2all
import heapq

def lpt(cx, npart):
  ''' from the list of (cx, gid) return a npart length list with each partition
      being a total_cx followed by a list of (cx, gid).
  cx.sort(key=lambda x:x[0], reverse=True)
  # initialize a priority queue for fast determination of current
  # partition with least complexity. The priority queue always has
  # npart items in it. At this time we do not care which partition will
  # be associated with which rank so a partition on the heap is just
  # (totalcx, [list of (cx, gid)]
  h = []
  for i in range(npart):
    heapq.heappush(h, (0.0, []))
  #each cx item goes into the current least complex partition
  for c in cx:
    lp = heapq.heappop(h) # least partition
    heapq.heappush(h, (lp[0]+c[0], lp[1]))
  parts = [heapq.heappop(h) for i in range(len(h))]
  return parts

def statistics(parts):
  npart = len(parts)
  total_cx = 0
  max_part_cx = 0
  ncx = 0
  max_cx = 0
  for part in parts:
    ncx += len(part[1])
    total_cx += part[0]
    if part[0] > max_part_cx:
      max_part_cx = part[0]
    for cx in part[1]:
      if cx[0] > max_cx:
        max_cx = cx[0]
  avg_part_cx =total_cx/npart
  loadbal = 1.0
  if max_part_cx > 0.:
    loadbal = avg_part_cx/max_part_cx
  s = "loadbal=%g total_cx=%g npart=%d ncx=%d max_part_cx=%g max_cx=%g"%(loadbal,total_cx,npart,ncx,max_part_cx, max_cx)
  return s

if __name__ == '__main__':
  from util import serialize, finish
  for cx in ([(i, i) for i in range(10)],[]):
    print len(cx), ' complexity items ', cx
    pinfo = lpt(cx, 3)
    print len(pinfo), ' lpt partitions ', pinfo
    print statistics(pinfo)