CA1 pyramidal neuron: Persistent Na current mediates steep synaptic amplification (Hsu et al 2018)

 Download zip file 
Help downloading and running models
Accession:240960
This paper shows that persistent sodium current critically contributes to the subthreshold nonlinear dynamics of CA1 pyramidal neurons and promotes rapidly reversible conversion between place-cell and silent-cell in the hippocampus. A simple model built with realistic axo-somatic voltage-gated sodium channels in CA1 (Carter et al., 2012; Neuron 75, 1081–1093) demonstrates that the biophysics of persistent sodium current is sufficient to explain the synaptic amplification effects. A full model built previously (Grienberger et al., 2017; Nature Neuroscience, 20(3): 417–426) with detailed morphology, ion channel types and biophysical properties of CA1 place cells naturally reproduces the steep voltage dependence of synaptic responses.
Reference:
1 . Hsu CL, Zhao X, Milstein AD, Spruston N (2018) Persistent sodium current mediates the steep voltage dependence of spatial coding in hippocampal pyramidal neurons Neuron 99:1-16
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Synapse; Channel/Receptor; Neuron or other electrically excitable cell; Axon; Dendrite;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal cell; Abstract single compartment conductance based cell;
Channel(s): I Sodium; I A; I M; I h; I K;
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Ion Channel Kinetics; Membrane Properties; Synaptic Integration; Synaptic Amplification; Place cell/field; Active Dendrites; Conductance distributions; Detailed Neuronal Models; Electrotonus; Markov-type model;
Implementer(s): Hsu, Ching-Lung [hsuc at janelia.hhmi.org]; Milstein, Aaron D. [aaronmil at stanford.edu];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal cell; AMPA; NMDA; I A; I K; I M; I h; I Sodium; Glutamate;
/
HsuEtAl2018
FullModel
data
morphologies
README.md
ampa_kin.mod *
exp2EPSC.mod
gaba_a_kin.mod *
h.mod
kad.mod *
kap.mod *
kdr.mod *
km2.mod
nas.mod
nax.mod
nmda_kin5.mod *
pr.mod *
vecevent.mod *
batch_nap_EPSC_amplification.sh
batch_nap_EPSP_amplification.sh
batch_nap_EPSP_amplification_IO.sh
function_lib.py
install notes.txt
plot_nap_EPSC_amplification.py
plot_nap_EPSP_amplification.py
plot_nap_EPSP_amplification_IO.py
plot_results.py
simulate_nap_EPSC_amplification.py
simulate_nap_EPSP_amplification.py
simulate_nap_EPSP_amplification_IO.py
specify_cells.py
visualize_ion_channel_gating_parameters.py
                            
:  Vector stream of events

NEURON {
	THREADSAFE
    ARTIFICIAL_CELL VecStim
	POINTER ptr
}

ASSIGNED {
	index
	etime (ms)
	ptr
}


INITIAL {
	index = 0
	element()
	if (index > 0) {
		net_send(etime - t, 1)
	}
}

NET_RECEIVE (w) {
	if (flag == 1) {
		net_event(t)
		element()
		if (index > 0) {
			net_send(etime - t, 1)
		}
	}
}

DESTRUCTOR {
VERBATIM
	void* vv = (void*)(_p_ptr);  
        if (vv) {
		hoc_obj_unref(*vector_pobj(vv));
	}
ENDVERBATIM
}

PROCEDURE element() {
VERBATIM	
  { void* vv; int i, size; double* px;
	i = (int)index;
	if (i >= 0) {
		vv = (void*)(_p_ptr);
		if (vv) {
			size = vector_capacity(vv);
			px = vector_vec(vv);
			if (i < size) {
				etime = px[i];
				index += 1.;
			}else{
				index = -1.;
			}
		}else{
			index = -1.;
		}
	}
  }
ENDVERBATIM
}

PROCEDURE play() {
VERBATIM
	void** pv;
	void* ptmp = NULL;
	if (ifarg(1)) {
		ptmp = vector_arg(1);
		hoc_obj_ref(*vector_pobj(ptmp));
	}
	pv = (void**)(&_p_ptr);
	if (*pv) {
		hoc_obj_unref(*vector_pobj(*pv));
	}
	*pv = ptmp;
ENDVERBATIM
}