CA1 pyramidal neuron (Combe et al 2018)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:244416
"Gamma oscillations are thought to play a role in learning and memory. Two distinct bands, slow (25-50 Hz) and fast (65-100 Hz) gamma, have been identified in area CA1 of the rodent hippocampus. Slow gamma is phase-locked to activity in area CA3 and presumably driven by the Schaffer collaterals. We used a combination of computational modeling and in vitro electrophysiology in hippocampal slices of male rats to test whether CA1 neurons responded to Schaffer collateral stimulation selectively at slow gamma frequencies, and to identify the mechanisms involved. Both approaches demonstrated that in response to temporally precise input at Schaffer collaterals, CA1 pyramidal neurons fire preferentially in the slow gamma range regardless of whether the input is at fast or slow gamma frequencies, suggesting frequency selectivity in CA1 output with respect to CA3 input. In addition, phase-locking, assessed by the vector strength, was more precise for slow gamma than fast gamma input. ..."
Reference:
1 . Combe CL, Canavier CC, Gasparini S (2018) Intrinsic Mechanisms of Frequency Selectivity in the Proximal Dendrites of CA1 Pyramidal Neurons. J Neurosci 38:8110-8127 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I Calcium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Gamma oscillations;
Implementer(s): Canavier, CC;
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I Calcium;
/
CombeEtAl2018
experiment
lib
pc2b
template
readme.html
cad.mod
cagk.mod
cal.mod *
calH.mod
car.mod
cat.mod
d3.mod *
exp2i.mod *
h.mod
kadist.mod
kaprox.mod
kca.mod
kcasimple.mod
kdr.mod
km.mod
na3.mod
na3dend.mod
na3notrunk.mod
nap.mod
nax.mod
netstims.mod
nmdanet.mod
somacar.mod
stim2.mod *
cell-setup.hoc
fixnseg.hoc
init.hoc
mosinit.hoc *
multisyn.hoc
print.ses
screenshot1.png
screenshot2.png
screenshot3.png
screenshot4.png
simplestim.hoc
trunk.ses
                            
TITLE na3
: Na current for axon. No slow inact.
: M.Migliore Jul. 1997

NEURON {
	SUFFIX nax
	USEION na READ ena WRITE ina
	RANGE  gbar
	GLOBAL minf, hinf, mtau, htau,thinf, qinf
}

PARAMETER {
	gbar = 0.010   	(mho/cm2)	
								
	:tha  =  -30	(mV)		: v 1/2 for act	
       tha  =  -30	(mV)		: v 1/2 for act	
	qa   = 7.2	(mV)		: act slope (4.5)		
	Ra   = 0.4	(/ms)		: open (v)		
	Rb   = 0.124 	(/ms)		: close (v)		

	:thi1  = -45	(mV)		: v 1/2 for inact 	
	:thi2  = -45 	(mV)		: v 1/2 for inact 
      thi1  = -45(mV)		: v 1/2 for inact 	
	thi2  = -45 	(mV)		: v 1/2 for inact	
	qd   = 1.5	(mV)	        : inact tau slope
	qg   = 1.5      (mV)
	mmin=0.02	
	hmin=0.5			
	q10=2
	Rg   = 0.01 	(/ms)		: inact recov (v) 	
	Rd   = .03 	(/ms)		: inact (v)	

	thinf  = -50	(mV)		: inact inf slope	
	:qinf  = 4 	(mV)		: inact inf slope 
       qinf  =1 	(mV)		: inact inf slope 


	ena		(mV)            : must be explicitly def. in hoc
	celsius
	v 		(mV)
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

ASSIGNED {
	ina 		(mA/cm2)
	thegna		(mho/cm2)
	minf 		hinf 		
	mtau (ms)	htau (ms) 	
}
 

STATE { m h}

BREAKPOINT {
        SOLVE states METHOD cnexp
        thegna = gbar*m*m*m*h
	ina = thegna * (v - ena)
} 

INITIAL {
	trates(v)
	m=minf  
	h=hinf
}

DERIVATIVE states {   
        trates(v)      
        m' = (minf-m)/mtau
        h' = (hinf-h)/htau
}

PROCEDURE trates(vm) {  
        LOCAL  a, b, qt
        qt=q10^((celsius-24)/10)
	a = trap0(vm,tha,Ra,qa)
	b = trap0(-vm,-tha,Rb,qa)
	mtau = 1/(a+b)/qt
        if (mtau<mmin) {mtau=mmin}
	minf = a/(a+b)

	a = trap0(vm,thi1,Rd,qd)
	b = trap0(-vm,-thi2,Rg,qg)
	htau =  1/(a+b)/qt
        if (htau<hmin) {htau=hmin}
	hinf = 1/(1+exp((vm-thinf)/qinf))
}

FUNCTION trap0(v,th,a,q) {
	if (fabs(v-th) > 1e-6) {
	        trap0 = a * (v - th) / (1 - exp(-(v - th)/q))
	} else {
	        trap0 = a * q
 	}
}