Striatal Spiny Projection Neuron, inhibition enhances spatial specificity (Dorman et al 2018)

 Download zip file 
Help downloading and running models
We use a computational model of a striatal spiny projection neuron to investigate dendritic spine calcium dynamics in response to spatiotemporal patterns of synaptic inputs. We show that spine calcium elevation is stimulus-specific, with supralinear calcium elevation in cooperatively stimulated spines. Intermediate calcium elevation occurs in neighboring non-stimulated dendritic spines, predicting heterosynaptic effects. Inhibitory synaptic inputs enhance the difference between peak calcium in stimulated spines, and peak calcium in non-stimulated spines, thereby enhancing stimulus specificity.
1 . Dorman DB, Jedrzejewska-Szmek J, Blackwell KT (2018) Inhibition enhances spatially-specific calcium encoding of synaptic input patterns in a biologically constrained model. Elife, Kennedy, Mary B, ed. [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Basal ganglia;
Cell Type(s): Neostriatum spiny neuron;
Channel(s): Ca pump; Kir; I A; I A, slow; I CAN; I K,Ca; I Krp; I Na,t; I L high threshold; I R; I T low threshold; IK Bkca; IK Skca; Na/Ca exchanger;
Gap Junctions:
Receptor(s): AMPA; NMDA; GabaA;
Gene(s): Cav3.2 CACNA1H; Cav3.3 CACNA1I; Cav1.2 CACNA1C; Cav1.3 CACNA1D; Cav2.2 CACNA1B; Kv4.2 KCND2; Kir2.1 KCNJ2; Kv2.1 KCNB1;
Transmitter(s): Gaba; Glutamate;
Simulation Environment: GENESIS;
Model Concept(s): Calcium dynamics; Detailed Neuronal Models; Synaptic Integration; Synaptic Plasticity;
Implementer(s): Dorman, Daniel B ;
Search NeuronDB for information about:  GabaA; AMPA; NMDA; I Na,t; I L high threshold; I T low threshold; I A; I K,Ca; I CAN; I A, slow; Na/Ca exchanger; I Krp; I R; Ca pump; Kir; IK Bkca; IK Skca; Gaba; Glutamate;

str spineCommonParent = "soma" // specifies which branches to add spines to; must be "soma" , "primdend1", or "secdend11"

       // for spine neck:
float   len_neck=0.5e-6                               //0.16-2.13
float   dia_neck=0.12e-6                             //(0.038-0.46)e-6
       // for spine head:
float   dia_head=0.5e-6                              //adopt common size, no exact data are available now
float   len_head=0.5e-6
str spcomp1="head"  //label or name of head compartment in spine
str spcomp2=""  //no separate name/label for neck compartment

int neckSlabs=3
int headSlabs=3
float head_thickness_inc=2.0
float neck_thickness_inc=1.0
float PSD_thick=0.07e-6

float spineRA = RA// SpineHEAD
float neckRA = 11.3// Results in spine neck Ra = .5 Gohm
//float spineRa=0.5e9 //DBD: changed from spineRA=4*RA to spineRa .5e9 based on IV/IF tuning
float spineRM=RM
float spineCM=CM

float spineStart=26.1e-6
float spineEnd=300e-6
float spineDensity=0.8//0.3 //in units of per micron

int addCa2Spine = 1		// 0, no VDCC in spine, 
					//1, yes VDCC in spine (non-synaptic)

int spinecalcium = 0   // We have two types of caclium:
                   // 0 : detailed multi-shell model, using "difshell" object
                   // 1 : simple calcium pool adopted from Sabatini's 2001, 2004
if ({spinecalcium<calciumtype})
	echo "bad idea; use difshells for spine or single for dendrites"

//for calcium and buffer diffusion messages between spine neck and dendrite.  
str upperShell = {CalciumName} @ 1

//  define spine specific calcium values here, and use them in spines.g

float gCaL12spine       =      {.65 * {getglobal gCaL12dend_{DA}}} //3.35e-7
float gCaL13spine       =      {.65 * {getglobal gCaL13dend_{DA}}} //4.25e-7
float gCaRspine         =      {.65 * {getglobal gCaRdend}}   //13e-7
float gCaT32spine         =      {.65 * {getglobal gCaT32dist}}   //0.235e-7
float gCaT33spine         =      {.65 * {getglobal gCaT33dist}}   //0.235e-7

float gSKspine          =      {gSKdend}

float kcatSpine =  1e-8 //75e-8
float kcatSpineNCX = 8e-8  //300e-8