CA1 network model for place cell dynamics (Turi et al 2019)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:246546
Biophysical model of CA1 hippocampal region. The model simulates place cells/fields and explores the place cell dynamics as function of VIP+ interneurons.
Reference:
1 . Turi GF, Li W, Chavlis S, Pandi I, O’Hare J, Priestley JB, Grosmark AD, Liao Z, Ladow M, Zhang JF, Zemelman BV, Poirazi P, Losonczy A (2019) Vasoactive Intestinal Polypeptide-Expressing Interneurons in the Hippocampus Support Goal-Oriented Spatial Learning Neuron
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus; Mouse;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA1 basket cell; Hippocampus CA1 basket cell - CCK/VIP; Hippocampus CA1 bistratified cell; Hippocampus CA1 axo-axonic cell; Hippocampus CA1 stratum oriens lacunosum-moleculare interneuron ; Hippocampal CA1 CR/VIP cell;
Channel(s): I A; I h; I K,Ca; I Calcium; I Na, leak; I K,leak; I M;
Gap Junctions:
Receptor(s): GabaA; GabaB; NMDA; AMPA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Brian;
Model Concept(s): Place cell/field;
Implementer(s): Chavlis, Spyridon [schavlis at imbb.forth.gr]; Pandi, Ioanna ;
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; GabaA; GabaB; AMPA; NMDA; I A; I K,leak; I M; I h; I K,Ca; I Calcium; I Na, leak;
/
Turi_et_al_2018
mechanisms
ANsyn.mod *
bgka.mod *
burststim2.mod *
cad.mod
cadyn.mod *
cadyn_new.mod *
cagk.mod *
cal.mod *
calH.mod *
cancr.mod *
car.mod *
cat.mod *
ccanl.mod *
gskch.mod *
h.mod *
hha_old.mod *
hha2.mod *
hNa.mod *
IA.mod *
iccr.mod *
ichan2.mod *
ichan2aa.mod *
ichan2bc.mod *
ichan2bs.mod *
ichan2vip.mod *
Ih.mod *
Ihvip.mod *
ikscr.mod *
kad.mod *
kadistcr.mod *
kap.mod *
Kaxon.mod *
kca.mod *
Kdend.mod *
kdrcr.mod *
km.mod *
Ksoma.mod *
LcaMig.mod *
my_exp2syn.mod *
Naaxon.mod *
Nadend.mod *
nafcr.mod *
nap.mod *
Nasoma.mod *
nca.mod *
nmda.mod *
regn_stim.mod *
somacar.mod *
STDPE2Syn.mod *
vecstim.mod *
                            
COMMENT
Potassium current for the soma
ENDCOMMENT

UNITS {
    (mA) = (milliamp)
    (mV) = (millivolt)
}
 
NEURON {
    SUFFIX Ksoma
    USEION k READ ek WRITE ik
    RANGE gksoma, ik
    GLOBAL ninf, nexp, ntau
}
 
INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}
 
PARAMETER {
    v (mV)
    celsius = 24 (degC)
    dt (ms)
    gksoma = .0319 (mho/cm2)
    ek = -90 (mV)
}
 
STATE { n }
 
ASSIGNED {
	ik (mA/cm2)
	ninf 
	nexp 
	ntau (ms)
}
 
INITIAL { n = ninf }

BREAKPOINT {
    SOLVE states
	ik = gksoma*n*n*n*n*(v - ek)    
}

PROCEDURE states() {	:exact when v held constant
	evaluate_fct(v)
	n = n + nexp*(ninf - n)
	VERBATIM
	return 0;
	ENDVERBATIM 
}
UNITSOFF

PROCEDURE evaluate_fct(v(mV)) {  
	:Computes rate and other constants at current v.
    
    :Call once from HOC to initialize inf at resting v.
    LOCAL q10, tinc, alpha, beta
    TABLE ninf, nexp, ntau DEPEND dt, celsius FROM -200 TO 100 WITH 300
	
	:q10 = 3^((celsius - 24)/10)
	q10   = 1	: BPG
	tinc  = -dt*q10
	alpha = 0.018*vtrap(-(v-25),25)
	beta  = 0.0036*vtrap(v-35,12)
	ntau  = 1/(alpha + beta)
	ninf  = alpha*ntau
	nexp  = 1-Exp(tinc/ntau)
}

FUNCTION vtrap(x,y) {	:Traps for 0 in denominator of rate eqns.
	if (fabs(x/y) < 1e-6) {
		vtrap = y*(1 - x/y/2)
	} else {
		vtrap = x/(Exp(x/y) - 1)
	}
}

FUNCTION Exp(x) {
	if (x < -100) {
		Exp = 0
	} else {
		Exp = exp(x)
	}
}
UNITSON