CA1 network model for place cell dynamics (Turi et al 2019)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:246546
Biophysical model of CA1 hippocampal region. The model simulates place cells/fields and explores the place cell dynamics as function of VIP+ interneurons.
Reference:
1 . Turi GF, Li W, Chavlis S, Pandi I, O’Hare J, Priestley JB, Grosmark AD, Liao Z, Ladow M, Zhang JF, Zemelman BV, Poirazi P, Losonczy A (2019) Vasoactive Intestinal Polypeptide-Expressing Interneurons in the Hippocampus Support Goal-Oriented Spatial Learning Neuron
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus; Mouse;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA1 basket cell; Hippocampus CA1 basket cell - CCK/VIP; Hippocampus CA1 bistratified cell; Hippocampus CA1 axo-axonic cell; Hippocampus CA1 stratum oriens lacunosum-moleculare interneuron ; Hippocampal CA1 CR/VIP cell;
Channel(s): I A; I h; I K,Ca; I Calcium; I Na, leak; I K,leak; I M;
Gap Junctions:
Receptor(s): GabaA; GabaB; NMDA; AMPA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; Brian;
Model Concept(s): Place cell/field;
Implementer(s): Chavlis, Spyridon [schavlis at imbb.forth.gr]; Pandi, Ioanna ;
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; GabaA; GabaB; AMPA; NMDA; I A; I K,leak; I M; I h; I K,Ca; I Calcium; I Na, leak;
/
Turi_et_al_2018
mechanisms
ANsyn.mod
bgka.mod
burststim2.mod *
cad.mod
cadyn.mod
cadyn_new.mod
cagk.mod *
cal.mod
calH.mod *
cancr.mod
car.mod *
cat.mod
ccanl.mod *
gskch.mod
h.mod
hha_old.mod *
hha2.mod
hNa.mod *
IA.mod
iccr.mod
ichan2.mod
ichan2aa.mod
ichan2bc.mod
ichan2bs.mod
ichan2vip.mod
Ih.mod *
Ihvip.mod
ikscr.mod *
kad.mod *
kadistcr.mod
kap.mod
Kaxon.mod
kca.mod
Kdend.mod
kdrcr.mod *
km.mod
Ksoma.mod
LcaMig.mod *
my_exp2syn.mod
Naaxon.mod
Nadend.mod
nafcr.mod *
nap.mod
Nasoma.mod
nca.mod *
nmda.mod
regn_stim.mod
somacar.mod
STDPE2Syn.mod *
vecstim.mod *
                            
TITLE K-A channel from Klee Ficker and Heinemann
: modified by Brannon and Yiota Poirazi (poirazi@LNC.usc.edu) 
: to account for Hoffman et al 1997 distal region kinetics
: used only in locations > 100 microns from the soma
:
: modified to work with CVode by Carl Gold, 8/10/03
:  Updated by Maria Markaki  12/02/03

NEURON {
	SUFFIX kadcr
	USEION k READ ki, ko WRITE ik 		:Changed from READ ek, 23/04/2010,Nassi
  RANGE gkabar,gka,ik
  GLOBAL ninf,linf,taul,taun,lmin
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}


PARAMETER {    :parameters that can be entered when function is called in cell-setup   

  gkabar = 0      (mho/cm2)  :initialized conductance
  vhalfn = -1     (mV)       :activation half-potential (-1), change for pfc, activation at -40
  vhalfl = -56    (mV)       :inactivation half-potential
  a0n = 0.1       (/ms)      :parameters used
  : a0l = 0.05       (/ms)      :parameters used
  zetan = -1.8    (1)        :in calculation of
  zetal = 3       (1) 
  :zetal = 3       (1)        :steady state values
  gmn   = 0.39    (1)        :and time constants
  :gmn   = 0.39    (1)        :and time constants, original
  gml   = 1       (1)
  lmin  = 2       (ms)
  nmin  = 0.1     (ms)
  :	nmin  = 0.2     (ms)	:suggested
  pw    = -1      (1)
  tq    = -40     (mV)
  qq    = 5       (mV)
  q10   = 5                :temperature sensitivity
}


ASSIGNED {    :parameters needed to solve DE
  v         (mV)
  ek        (mV)
  celsius  	(degC)
  ik        (mA/cm2)
  ninf
  linf      
  taul      (ms)
  taun      (ms)
  gka       (mho/cm2)
  ki		    (mM)
  ko		    (mM)
}


STATE {       :the unknown parameters to be solved in the DEs 
	n l
}

: Solve qt once in initial block
LOCAL qt

INITIAL {    :initialize the following parameter using rates()
  qt = q10^((celsius-24)/10(degC))       : temperature adjustment factor
	rates(v)
	n=ninf
	l=linf
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	ek = 25 * log(ko/ki)		:Changed, added, 23/04/2010, Nassi
	ik = gkabar*n*l*(v-ek)
}


DERIVATIVE states {     : exact when v held constant; integrates over dt step
  rates(v)              : do this here
  n' = (ninf - n)/taun
  l' = (linf - l)/taul
}



PROCEDURE rates(v (mV)) {		 :callable from hoc
	LOCAL a

  a = alpn(v)
  ninf = 1/(1 + a)		             : activation variable steady state value
  taun = betn(v)/(qt*a0n*(1+a))	   : activation variable time constant
	if (taun<nmin) {taun=nmin}	     : time constant not allowed to be less than nmin
    a = alpl(v)
    linf = 1/(1 + a)               : inactivation variable steady state value
  	:taul = 6 (ms)
  	taul = 0.26(ms/mV)*(v+50)      : inactivation variable time constant (0.26)
	if (taul<lmin) {taul=lmin}       : time constant not allowed to be less than lmin
}


FUNCTION alpn(v(mV)) { LOCAL zeta
  zeta = zetan+pw/(1+exp((v-tq)/qq))
UNITSOFF
  alpn = exp(1.e-3*zeta*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
UNITSON
}

FUNCTION betn(v(mV)) { LOCAL zeta
  zeta = zetan+pw/(1+exp((v-tq)/qq))
UNITSOFF
  betn = exp(1.e-3*zeta*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
UNITSON
}

FUNCTION alpl(v(mV)) {
UNITSOFF
  alpl = exp(1.e-3*zetal*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) 
UNITSON
}

FUNCTION betl(v(mV)) {
UNITSOFF
  betl = exp(1.e-3*zetal*gml*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) 
UNITSON
}