Layer V pyramidal cell functions and schizophrenia genetics (Mäki-Marttunen et al 2019)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:249463
Study on how GWAS-identified risk genes of shizophrenia affect excitability and integration of inputs in thick-tufted layer V pyramidal cells
Reference:
1 . Mäki-Marttunen T, Devor A, Phillips WA, Dale AM, Andreassen OA, Einevoll GT (2019) Computational modeling of genetic contributions to excitability and neural coding in layer V pyramidal cells: applications to schizophrenia pathology Front. Comput. Neurosci. 13:66
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Neocortex;
Cell Type(s):
Channel(s): I A; I M; I h; I K,Ca; I Calcium; I A, slow; I Na,t; I Na,p; I L high threshold; I T low threshold;
Gap Junctions:
Receptor(s): AMPA; NMDA; Gaba;
Gene(s):
Transmitter(s): Glutamate; Gaba;
Simulation Environment: NEURON; Python;
Model Concept(s): Schizophrenia; Dendritic Action Potentials; Action Potential Initiation; Synaptic Integration;
Implementer(s): Maki-Marttunen, Tuomo [tuomo.maki-marttunen at tut.fi];
Search NeuronDB for information about:  AMPA; NMDA; Gaba; I Na,p; I Na,t; I L high threshold; I T low threshold; I A; I M; I h; I K,Ca; I Calcium; I A, slow; Gaba; Glutamate;
/
l5pc_scz
almog
cells
README.html
BK.mod *
ca_h.mod
ca_r.mod
cad.mod *
epsp.mod *
ih.mod *
kfast.mod
kslow.mod
na.mod
ProbAMPANMDA2.mod *
ProbUDFsyn2.mod *
SK.mod *
best.params *
calcifcurves2.py
calcifcurves2_comb_one.py
calcnspikesperburst.py
calcsteadystate.py
calcupdownresponses.py
cc_run.hoc *
coding.py
coding_comb.py
coding_nonprop_somaticI.py
coding_nonprop_somaticI_comb.py
collectifcurves2_comb_one.py
collectthresholddistalamps.py
combineppicoeffs_comb_one.py
drawfigcomb.py
drawnspikesperburst.py
findppicoeffs.py
findppicoeffs_merge.py
findppicoeffs_merge_comb_one.py
findthresholdbasalamps_coding.py
findthresholddistalamps.py
findthresholddistalamps_coding.py
findthresholddistalamps_comb.py
main.hoc *
model.hoc *
model_withsyns.hoc
mosinit.hoc *
mutation_stuff.py
myrun.hoc *
myrun_withsyns.hoc
mytools.py
params.hoc *
protocol.py
savebasalsynapselocations_coding.py
savesynapselocations_coding.py
scalemutations.py
scalings_cs.sav
setparams.py
synlocs450.0.sav
                            
load_3dcell(CellFileName)
    track_data =0

proc init(){
            finitialize(-70)
            save_dt=dt
            dt=10
            i=0
            for i=1,38 fadvance()
            print t
            dt=save_dt
}


a_soma SomaStimSec = new SectionRef()
apic[11] DendStimSec = new SectionRef()
DendStimSec.sec {nseg=40}

func tfunk(){local Chisq,dumm
        Chisq=0
        ra  = transvec.x(0)
        rm = transvec.x(1)
        c_m = transvec.x(2)
        epas_sim  = transvec.x(3)
        gih_end  = transvec.x(4)
	gih_x2 = transvec.x(5)
        gih_alpha=transvec.x(6)
	gih_start=transvec.x(7)
	ih_q10=transvec.x(8)
	gkslow_start= transvec.x(9)
	gkslow_alpha= transvec.x(10)
	gkslow_beta=transvec.x(11)
	gka_start= transvec.x(12)
	gka_alpha= transvec.x(13)
	gka_beta= transvec.x(14)
	gna_soma = transvec.x(15)
	gna_api = transvec.x(16)
	dist_na = transvec.x(17)
	na_shift1 = transvec.x(18)
	na_shift2 = transvec.x(19)
	pcah_soma = transvec.x(20)
	pcah_api = transvec.x(21)
	dist_cah = transvec.x(22)
	cah_shift=transvec.x(23)
	cah_shifth=transvec.x(24)

	pcar_soma = transvec.x(25)
	pcar_api = transvec.x(26)
	dist_car = transvec.x(27)
        car_shift=transvec.x(28)
	car_shifth=transvec.x(29)
	car_qm=transvec.x(30)	
	
	gsk_soma=transvec.x(31)
	gsk_dend=transvec.x(32)
	dist_sk=transvec.x(33)
	gbk_soma=transvec.x(34)
	gbk_dend=transvec.x(35)
	dist_bk=transvec.x(36)		
        density()
	return Chisq
}