The APP in C-terminal domain alters CA1 neuron firing (Pousinha et al 2019)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:256388
"The amyloid precursor protein (APP) is central to AD pathogenesis and we recently showed that its intracellular domain (AICD) could modify synaptic signal integration. We now hypothezise that AICD modifies neuron firing activity, thus contributing to the disruption of memory processes. Using cellular, electrophysiological and behavioural techniques, we showed that pathological AICD levels weakens CA1 neuron firing activity through a gene transcription-dependent mechanism. Furthermore, increased AICD production in hippocampal neurons modifies oscillatory activity, specifically in the gamma frequency range, and disrupts spatial memory task. Collectively, our data suggest that AICD pathological levels, observed in AD mouse models and in human patients, might contribute to progressive neuron homeostatic failure, driving the shift from normal ageing to AD."
Reference:
1 . Pousinha PA, Mouska X, Bianchi D, Temido-Ferreira M, Rajão-Saraiva J, Gomes R, Fernandez SP, Salgueiro-Pereira AR, Gandin C, Raymond EF, Barik J, Lopes LV, Migliore M, Goutagny R, Bethus I, Marie H (2019) The Amyloid Precursor Protein C-terminal domain alters CA1 neuron firing, modifying hippocampus oscillations and impairing spatial memory encoding Cell Reports, in press
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I Na,t; I A; I K; I M; I h; I L high threshold; I_AHP;
Gap Junctions:
Receptor(s): NMDA;
Gene(s):
Transmitter(s): Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Aging/Alzheimer`s; Oscillations; Action Potentials; Memory;
Implementer(s): Bianchi, Daniela [danielabianchi12 -at- gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; NMDA; I Na,t; I L high threshold; I A; I K; I M; I h; I_AHP; Glutamate;
/
PousinhaMouskaBianchiEtAl2019
readme.txt
ANsyn.mod *
bgka.mod *
burststim2.mod *
cad.mod *
cagk.mod
cal.mod *
calH.mod *
car.mod *
cat.mod *
ccanl.mod *
d3.mod *
gskch.mod *
h.mod *
IA.mod
ichan2.mod *
Ih.mod *
kadist.mod *
kaprox.mod *
Kaxon.mod *
kca.mod *
Kdend.mod *
kdr.mod *
kdrax.mod *
km.mod *
Ksoma.mod *
LcaMig.mod *
my_exp2syn.mod *
na3.mod *
na3dend.mod *
na3notrunk.mod *
Naaxon.mod *
Nadend.mod *
nap.mod *
Nasoma.mod *
nax.mod *
nca.mod *
nmdanet.mod *
regn_stim.mod *
somacar.mod *
STDPE2Syn2.mod *
mosinit.hoc
pyramidal_cell4b.hoc
ranstream.hoc *
ses.ses
stim_cell.hoc *
testcell.hoc
                            
TITLE na3
: Na current for axon. No slow inact.
: M.Migliore Jul. 1997

NEURON {
	SUFFIX nax
	USEION na READ ena WRITE ina
	RANGE  gbar,sh
	GLOBAL minf, hinf, mtau, htau,thinf, qinf
}

PARAMETER {
	gbar = 0.010   	(mho/cm2)	
	sh=0							
	:tha  =  -30	(mV)		: v 1/2 for act	
       tha  =  -30	(mV)		: v 1/2 for act	
	qa   = 7.5	(mV)		: act slope (4.5)		
	Ra   = 0.4	(/ms)		: open (v)		
	Rb   = 0.124 	(/ms)		: close (v)		

	:thi1  = -45	(mV)		: v 1/2 for inact 	
	:thi2  = -45 	(mV)		: v 1/2 for inact 
      thi1  = -45(mV)		: v 1/2 for inact 	
	thi2  = -45 	(mV)		: v 1/2 for inact	
	qd   = 1.5	(mV)	        : inact tau slope
	qg   = 1.5      (mV)
      :qd   = 1.5	(mV)	        : inact tau slope
	:qg   = 1.5      (mV)
    
	mmin=0.02	
	hmin=0.5			
	q10=3
	Rg   = 0.01 	(/ms)		: inact recov (v) 	
	Rd   = .03 	(/ms)		: inact (v)	

	thinf  = -50	(mV)		: inact inf slope	
	:qinf  = 4 	(mV)		: inact inf slope 
       qinf  =2 	(mV)		: inact inf slope 


	ena		(mV)            : must be explicitly def. in hoc
	celsius
	v 		(mV)
}


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
	(pS) = (picosiemens)
	(um) = (micron)
} 

ASSIGNED {
	ina 		(mA/cm2)
	thegna		(mho/cm2)
	minf 		hinf 		
	mtau (ms)	htau (ms) 	
}
 

STATE { m h}

BREAKPOINT {
        SOLVE states METHOD cnexp
        thegna = gbar*m*m*m*h
	ina = thegna * (v - ena)
} 

INITIAL {
	trates(v)
	m=minf  
	h=hinf
}

DERIVATIVE states {   
        trates(v)      
        m' = (minf-m)/mtau
        h' = (hinf-h)/htau
}

PROCEDURE trates(vm) {  
        LOCAL  a, b, qt
        qt=q10^((celsius-24)/10)
	a = trap0(vm,tha+sh,Ra,qa)
	b = trap0(-vm,-tha-sh,Rb,qa)
	mtau = 1/(a+b)/qt
        if (mtau<mmin) {mtau=mmin}
	minf = a/(a+b)

	a = trap0(vm,thi1+sh,Rd,qd)
	b = trap0(-vm,-thi2-sh,Rg,qg)
	htau =  1/(a+b)/qt
        if (htau<hmin) {htau=hmin}
	hinf = 1/(1+exp((vm-thinf-sh)/qinf))
}

FUNCTION trap0(v,th,a,q) {
	if (fabs(v-th) > 1e-6) {
	        trap0 = a * (v - th) / (1 - exp(-(v - th)/q))
	} else {
	        trap0 = a * q
 	}
}