CA1 pyramidal neuron: nonlinear a5-GABAAR controls synaptic NMDAR activation (Schulz et al 2018)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:258867
The study shows that IPSCs mediated by a5-subunit containing GABAA receptors are strongly outward-rectifying generating 4-fold larger conductances above -50?mV than at rest. Experiments and modeling show that synaptic activation of these receptors can very effectively control voltage-dependent NMDA-receptor activation in a spatiotemporally controlled manner in fine dendrites of CA1 pyramidal cells. The files contain the NEURON code for Fig.8, Fig.S8 and Fig.S9 of the paper. The model is based on the model published by Bloss et al., 2017. Physiological properties of GABA synapses were modified as determined by optogenetic activation of inputs during voltage-clamp recordings in Schulz et al. 2018. Other changes include stochastic synaptic release and short-term synaptic plasticity. All changes of mechanisms and parameters are detailed in the Methods of the paper. Simulation can be run by starting start_simulation.hoc after running mknrndll. The files that model the individual figures have to be uncommented in start_simulation.hoc beforehand.
Reference:
1 . Schulz JM, Knoflach F, Hernandez MC, Bischofberger J (2018) Dendrite-targeting interneurons control synaptic NMDA-receptor activation via nonlinear a5-GABAA receptors. Nat Commun 9:3576 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Dendrite; Synapse;
Brain Region(s)/Organism: Hippocampus; Mouse;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell;
Channel(s): I h; I A;
Gap Junctions:
Receptor(s): GabaA; GabaB; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s):
Implementer(s): Schulz, Jan M [j.schulz at unibas.ch];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; GabaA; GabaB; AMPA; NMDA; I A; I h; Gaba; Glutamate;
/
Alpha5_NMDA_CA1_pyr
README.html
dists.mod *
eff.mod *
exc.mod *
gabab.mod
h.mod
id.mod *
inh.mod
kad.mod *
kap.mod *
kdr.mod *
na3.mod *
nmdaSyn.mod
syns.mod *
tonic.mod
activateExcitation.hoc
activateInhibition_JMS.hoc
addChannels_JMS.hoc
addExcitation_JMS.hoc
addVgatInhibition_JMS.hoc
channelParameters.hoc
Connect_Stimulator2ExcSyn.hoc
Connect_Stimulator2InhSyn.hoc
Fig8_tuft_NMDA_spike.hoc
FigS8_SR_SLM_burst_stim.hoc
FigS9_test_TI.hoc
flagVgatInhibition_JMS.hoc
Generate_Stimulator.hoc
getBranchOrder.hoc *
idMorph.hoc
inhibitionBiophysics_JMS.hoc
initializationAndRun.hoc *
loadMorph.hoc *
mosinit.hoc
naceaxon.nrn *
Print-to-File.hoc
processMorph.hoc *
proofreadMorph.hoc *
resetNSeg.hoc *
screenshot.png
start_simulation.hoc
synHelperScripts.hoc
SynStim_SR_SLM_control.hoc
SynStim_SR_SLM_noInh.hoc
SynStim_SR_SLM_redInh.hoc
SynStim_SR_SLM_TI.hoc
tuft_NMDA_spike_fast.hoc
tuft_NMDA_spike_noRect.hoc
twinApical.swc *
update_Synapses.hoc
                            
// THIS FILE ALLOCATES EXCITATORY SYNAPSES ACROSS THE ARBOR.

// Preallocate objects for excitation.
// Prep for synapse placement.
nExc = 30000
objref synAmpa[nExc] //nsAmpa[nExc],ncAmpa[nExc],
objref synNmda[nExc] //nsNmda[nExc],ncNmda[nExc],
synInd = 0

// This function takes a SectionRef and a vector with surface area synapse
// scaling and places the number of correspond excitatory synapses.  Note that
// the low index of the first placed synapse needs to be specified in order to
// give indices to all of the generated synapses.
//
// $o1: SectionRef instance.  Contains the section to implement with the
// 	scaling rule.
// $o2: Vector instance.  Contains the scaling rule to implement.  If the
//	density is uniform across the branch (e.g., 0.1 synapses/um2), then
//	simply supply as 
//		foo = new Vector(1); foo.x[0] = 0.1; $o1 = foo
// 	Conversely, if
// 	there is spatial variation across the branch (say, 0.1 synapses/um2 in the
//	first third, 0.2 synapses/um2 in the second third, and 0.3 synapses/um2
// 	in the final third), then, supply as
//		foo = new Vector(3) ; foo.x[0] = 0.1, foo.x[1] = 0.2;
//			foo.x[2] = 0.3 ; $o1 = foo
// $3: numeric.  The index of the first synapse to be created and placed.
//
// The number of synapses added is returned.
func addExcitation() {local nDiv,runningSa,synAdd,synCur,ii,jj
	nDiv = $o2.size()
	synCur = $3
	// Place synapses.
	$o1.sec {
		for ii=1,nDiv {
	
			runningSa=0
			synAdd=0
			
			for(x,0){
				if(((ii-1)/nDiv)<x_eff(x)){
					if(x_eff(x)<(ii/nDiv+0.00000001)){
						runningSa+=area(x)
						if(int(runningSa*$o2.x[ii-1])>(synAdd+0.000001)){
							toAdd = int(runningSa*$o2.x[ii-1]-synAdd)

							for jj=1,toAdd{	
								synCur = synCur+1
								synAdd = synAdd+1
								synAmpa[synCur-1] = new excSyn(x)
								synAmpa[synCur-1].xEff = x_eff(x)
								
								synNmda[synCur-1] = new Exp2SynNmda(x)
							}
				
						}else{
							toAdd = 0
						}
						exc_syns(x) = toAdd
					}
				}
			}
		}
		

	}
	
	return synCur-$3
}




// Add synapses to tuft.
	objref denExcTuft
	denExcTuft = new Vector(1)
		denExcTuft.x[0] = 0.5 //0.2
	
    numtuft=0	
	forsec tuftList {
		curSec = new SectionRef()
		numAdded = addExcitation(curSec,denExcTuft,synInd)
		synInd+=numAdded
        numtuft+=numAdded
	}	
    print "Number of excitatory synapses added to the tuft ", numtuft
	
// Add synapses to obliques.
	objref denExcObl
	denExcObl = new Vector(1)
		denExcObl.x[0] = 1.2 // spines/um2
        
	numobl=0	
	forsec obliqueList {
		curSec = new SectionRef()	
		numAdded = addExcitation(curSec,denExcObl,synInd)
		synInd+=numAdded
        numobl+=numAdded
	}
    print "Number of excitatory synapses added to obliques ", numobl
	
// Add synapses to trunk.
	objref denExcTrunk,denExcTrunkTemp
	denExcTrunk = new Vector(1)
		denExcTrunk.x[0] = 0.8
	denExcTrunkTemp = new Vector(denExcTrunk.size())
	soma.sec{distance()}
	
    numtru=0
	forsec primList {
		curSec = new SectionRef()	
		scaleFact = theDist/200
		denExcTrunkTemp.copy(denExcTrunk)
		denExcTrunkTemp.mul(scaleFact)
		
		numAdded = addExcitation(curSec,denExcTrunkTemp,synInd)
		synInd+=numAdded
        numtru+=numAdded
	}
    print "Number of excitatory synapses added to the trunk ", numtru

// Add synapses to basal dendrites.
	objref denExcBasalPrim,denExcBasalSec,denExcBasalTerm
	denExcBasalPrim = new Vector(1)
		denExcBasalPrim.x[0] = 0
	denExcBasalSec = new Vector(1)
		denExcBasalSec.x[0] = 0.1
	denExcBasalTerm = new Vector(1)
		denExcBasalTerm.x[0] = 0.9
	
		
	forsec basalList {
		curSec = new SectionRef()
		if(isTerm_id){
			numAdded = addExcitation(curSec,denExcBasalTerm,synInd)
		}else{
			if(abs(brOrd_id-1)<0.001){
				numAdded = addExcitation(curSec,denExcBasalPrim,synInd)
			}else{
				if(abs(brOrd_id-2)<0.001){
					numAdded = addExcitation(curSec,denExcBasalSec,synInd)
				}else{
					numAdded = addExcitation(curSec,denExcBasalSec,synInd) // keep as 2ary for time being
				}
			}
		}

		synInd+=numAdded
	}
	
// reset value of nExc
nExc = synInd	
print "Number of excitatory synapses is: ",nExc


// Change properties of excitatory inputs.
for ii=1,nExc {

	synAmpa[ii-1].tau1= 0.2 //0.5 // Andrasfalvy and Magee, 2001; cited in Migliore 2003// 0.2  // Jarsky et al., 2005
	synAmpa[ii-1].tau2 = 3 // Andrasfalvy and Magee, 2001; cited in Migliore 2003// 2 // Jarsky et al., 2005
	synAmpa[ii-1].e = 0
	synNmda[ii-1].tau1= nmdaTau1 // Schulz; 5  
	synNmda[ii-1].tau2 = nmdaTau2 // Schulz; 100 
	synNmda[ii-1].e = 0
	
}