Mean field model for Hodgkin Huxley networks of neurons (Carlu et al 2020)

 Download zip file 
Help downloading and running models
Accession:263259
"We present a mean-field formalism able to predict the collective dynamics of large networks of conductance-based interacting spiking neurons. We apply this formalism to several neuronal models, from the simplest Adaptive Exponential Integrate-and-Fire model to the more complex Hodgkin-Huxley and Morris-Lecar models. We show that the resulting mean-field models are capable of predicting the correct spontaneous activity of both excitatory and inhibitory neurons in asynchronous irregular regimes, typical of cortical dynamics. Moreover, it is possible to quantitatively predict the population response to external stimuli in the form of external spike trains. This mean-field formalism therefore provides a paradigm to bridge the scale between population dynamics and the microscopic complexity of the individual cells physiology."
Reference:
1 . Carlu M, Chehab O, Dalla Porta L, Depannemaecker D, Héricé C, Jedynak M, Köksal Ersöz E, Muratore P, Souihel S, Capone C, Zerlaut Y, Destexhe A, di Volo M (2020) A mean-field approach to the dynamics of networks of complex neurons, from nonlinear Integrate-and-Fire to Hodgkin-Huxley models. J Neurophysiol 123:1042-1051 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type:
Brain Region(s)/Organism:
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: Python;
Model Concept(s): Methods;
Implementer(s): di Volo, Matteo [matteo.di-volo at cyu.fr];
�
���]c@sddlZddljZddlZejjd�ddlm	Z	ddl
mZddlm
Z
ddlmZmZmZejjd�ddlmZdd	lTd
�Zd�Zdd
�Zd�Zdd�ZedkrddlZejdddej�Zejddddd�ejdddde dd�ejdddde dd�ejd dd!de dd"�ejd#dd$de dd%�ejd&dd$de dd'�ejd(dd)de dd*�ejd+dd,de dd-�ejd.dd/de dd0�ejd1dd2de!dd3�ejd4d5dd6dd7�ejd8dd9de!dd:�ejd;d<d=d>�ej"�Z#e#j$r�ee#d?e#j%�qdd@l&m'Z'e'e#dAe#j(d3e#j)e#j*gdBdC�Z+e,e+dDe-�ndS(Ei����Ns../(tget_neuron_params(tget_membrane_equation(t$get_connectivity_and_synapses_matrix(t(build_up_recurrent_connections_for_2_poptbuild_up_recurrent_connectionstbuild_up_poisson_group_to_pops../code(terf(t*cCsddtj|�S(Ng�?i(tnptsign(tx((sj/Users/matteo/Desktop/Mac_pro_Matteo_9_2019/spring_school/HH_project/network_simulations/waveform_input.pyt	heavisidescCsddt|�S(Ng�?i(R(R
((sj/Users/matteo/Desktop/Mac_pro_Matteo_9_2019/spring_school/HH_project/network_simulations/waveform_input.pytsmooth_heavisidesg{�G�z�?cCsm|tj||dd|d�t|||�tj||dd|d�t|||�S(Nig@(RtexpR(tttt0tT1tT2t	amplitudet	smoothing((sj/Users/matteo/Desktop/Mac_pro_Matteo_9_2019/spring_school/HH_project/network_simulations/waveform_input.pytsmooth_double_gaussians4cCse|tj||dd|d�t||�tj||dd|d�t||�S(Nig@(RR
R(RRRRR((sj/Users/matteo/Desktop/Mac_pro_Matteo_9_2019/spring_school/HH_project/network_simulations/waveform_input.pytdouble_gaussians0s
data/1.npycCstjt|j|j��|j}t||j|j|j|j	�}t
|jjd�d�}|dd}t
d|jjd�dd|jjd�dd|jjd�dd	dd
|jd|jd|jd
|jd|d|dtd|jd|jd|�dS(Ns--iit	ext_drivetNRN_exctNRN_inhitNTWKt
kick_valuet
kick_durationtDTttstoptSEEDt
input_ratetfull_recordingtn_rectafferent_exc_fractiontfilename(ii(RtarangetintRRRRRRtampRtCONFIGtsplittrun_simulationRRtTrueR!R"(targsR#RRtMR((sj/Users/matteo/Desktop/Mac_pro_Matteo_9_2019/spring_school/HH_project/network_simulations/waveform_input.pytrun_simulation_with_input!s&$	t__main__tdescriptions 
     ----------------------------------------------------------------------
     Run the a network simulation using brian2

     Choose CELLULAR and NTWK PARAMETERS from the available libraries
     see  ../synapses_and_connectivity.syn_and_connec_library.py for the CELLS
     see ../synapses_and_connectivity.syn_and_connec_library.py for the NTWK

     Then construct the input as "NRN_exc--NRN_inh--NTWK"
     example: "LIF--LIF--Vogels-Abbott"
     ----------------------------------------------------------------------
     tformatter_classs--CONFIGthelps Cell and Network configuration !tdefaultsRS-cell--FS-cell--CONFIG1s--afferent_exc_fractionsstimulation amplitude in Hzttypegs--ampg�?s--t0sstimulation middle point in msg@�@s--T1sstimulation rise time in msgY@s--T2g�b@s--DTstime steps in msg�������?s--tstopstime of simulation in msg@�@s--kick_durations/ stimulation duration (ms) for the initial kickg4@s--SEEDsSEED for the simulationis-fs--filesfilename for savingsdata/waveform_input_example.npys--n_recsnumber of recorded neuronsis-Ss--simtactiont
store_trueR#(t!plot_ntwk_sim_output_for_waveformtzoom_conditionst
raster_numberi�t	visualize(.tnumpyRtmatplotlib.pylabtpylabtplttsystpathtappendtsingle_cell_models.cell_libraryRt!single_cell_models.cell_constructRt0synapses_and_connectivity.syn_and_connec_libraryRt2synapses_and_connectivity.syn_and_connec_constructRRRt
scipy.specialRt
ntwk_sim_demoRRRRR-t__name__targparsetArgumentParsertRawTextHelpFormattertparsertadd_argumenttfloatR%t
parse_argsR+tsimtfiletcompare_with_mean_fieldR6RRRtFIGStput_list_of_figs_to_svg_figtFalse(((sj/Users/matteo/Desktop/Mac_pro_Matteo_9_2019/spring_school/HH_project/network_simulations/waveform_input.pyt<module>sV