% Simulazione rete intera + Working Memory - DESYNC
%% parametri
dt=0.0001; %0.1 millisecondi
if ~(exist('t_sim','var')) %controllo se ho già definito la durata della simulazione altrove, altrimenti la fisso a 1.5sec di default
t_sim=1.5;
end
t=(0:dt:t_sim);
T=length(t);
% Parametri sigmoide
e0=2.5; %Hz
r=0.7; %1/mV
s0=10; %centro della sigmoide
% ritardi nella comunicazione tra colonne diverse
D_intraLayer=round(dt/dt);
% costanti di tempo sinapsi intra-colonna
a=[1/7.7 1/34 1/6.8]*1000; %nell'ordine: ae, as, af; a=1/tau (1/secondi)
% Guadagni (mV) delle sinapsi (G)
G=[5.17 4.45 57.1]; %Ge = 5.17; (per h_e)
%Gs = 4.45; (per h_s)
%Gf = 57.1; (per h_f)
%pesi sinaptici:
C(:,1) = 31.7*ones(1,numero_colonne); %Cep
C(:,2) = 17.3*ones(1,numero_colonne); %Cpe
C(:,3) = 51.9*ones(1,numero_colonne); %Csp
C(:,4) = 100*ones(1,numero_colonne); %Cps
C(:,5) = 100*ones(1,numero_colonne); %Cfs
C(:,6) = 66.9*ones(1,numero_colonne); %Cfp
C(:,7) = 16*ones(1,numero_colonne); %Cpf %%%%%%%% aumentato da 12.3 a 16
C(:,8) = 18*ones(1,numero_colonne); %Cff
%% simulazione L1 e WM
sigma_p = sqrt(5/dt);
sigma_f = sqrt(5/dt);
rng(10) %per WM
np0 = randn(numero_colonne,T)*sigma_p;
nf0 = randn(numero_colonne,T)*sigma_f;
rng(11) %per L1
np1 = randn(numero_colonne,T)*sigma_p;
nf1 = randn(numero_colonne,T)*sigma_f;
yp0=zeros(numero_colonne,T);
xp0=zeros(numero_colonne,T);
vp0=zeros(numero_colonne,1);
zp0=zeros(numero_colonne,T);
ye0=zeros(numero_colonne,T);
xe0=zeros(numero_colonne,T);
ve0=zeros(numero_colonne,1);
ze0=zeros(numero_colonne,T);
ys0=zeros(numero_colonne,T);
xs0=zeros(numero_colonne,T);
vs0=zeros(numero_colonne,1);
zs0=zeros(numero_colonne,T);
yf0=zeros(numero_colonne,T);
xf0=zeros(numero_colonne,T);
zf0=zeros(numero_colonne,T);
vf0=zeros(numero_colonne,1);
xl0=zeros(numero_colonne,T);
yl0=zeros(numero_colonne,T);
Ee0=zeros(numero_colonne,1);
Ep0=zeros(numero_colonne,1);
mf0=zeros(numero_colonne,1);
yp1=zeros(numero_colonne,T);
xp1=zeros(numero_colonne,T);
vp1=zeros(numero_colonne,1);
zp1=zeros(numero_colonne,T);
ye1=zeros(numero_colonne,T);
xe1=zeros(numero_colonne,T);
ve1=zeros(numero_colonne,1);
ze1=zeros(numero_colonne,T);
ys1=zeros(numero_colonne,T);
xs1=zeros(numero_colonne,T);
vs1=zeros(numero_colonne,1);
zs1=zeros(numero_colonne,T);
yf1=zeros(numero_colonne,T);
xf1=zeros(numero_colonne,T);
zf1=zeros(numero_colonne,T);
vf1=zeros(numero_colonne,1);
xl1=zeros(numero_colonne,T);
yl1=zeros(numero_colonne,T);
Ep1=zeros(numero_colonne,1);
mf1=zeros(numero_colonne,1);
mp1=zeros(numero_colonne,1);
Wp_WMWM=zeros(numero_colonne);
for k=2:T-1 %ciclo nel tempo...
%completo ingressi a piramidali e gaba fast (di WM e L1):
mp0=INPUT_WM(:,k)*600; %serve un ingresso variabile nel tempo.
if (sum(mp0)==0 && sum(INPUT_WM(:,k-1))>0) %se smetto di ricevere ingresso...
Wp_WMWM=diag(INPUT_WM(:,k-1))*300; %le colonne eccitate dall'ultimo ingresso mantengono l'info.
elseif (sum(mp0)~=0) %se invece l'input è non nullo...
Wp_WMWM=zeros(numero_colonne); %seguo l'ingresso senza auto-eccitazione.
end
up0=np0(:,k)+mp0;
uf0=nf0(:,k)+mf0;
up1=np1(:,k)+mp1;
uf1=nf1(:,k)+mf1;
if(k>D_intraLayer) %comunicazione sinaptica
Ep0=Wp_WML1*yp1(:,k-D_intraLayer)+Wp_WMWM*yp0(:,k-D_intraLayer); %feedback da L1 & mantenimento dell'info sull'input
% il termine Wp_WMWM*yp0 coincide essenzialmente con un fattore del
% tipo Cpp*yp0 da aggiungere a vp0 nella riga 124 - ponendo Cpp=300
% o Cpp=0 a seconda che l'input sia assente o presente (rispettivamente).
Ep1=Wp_L1WM*yp0(:,k-D_intraLayer)+Wp_L1L1*yp1(:,k-D_intraLayer); %trasmissione WM->L1 e autoassociazione in L1
end
%potenziali post-sinaptici WM: (comb lin degli outputs standard)
vp0(:)=C(:,2).*ye0(:,k)-C(:,4).*ys0(:,k)-C(:,7).*yf0(:,k)+Ep0;
ve0(:)=C(:,1).*yp0(:,k);
vs0(:)=C(:,3).*yp0(:,k);
vf0(:)=C(:,6).*yp0(:,k)-C(:,5).*ys0(:,k)-C(:,8).*yf0(:,k)+yl0(:,k);
%spikes:
zp0(:,k)=2*e0./(1+exp(-r*(vp0(:)-s0)));
ze0(:,k)=2*e0./(1+exp(-r*(ve0(:)-s0)));
zs0(:,k)=2*e0./(1+exp(-r*(vs0(:)-s0)));
zf0(:,k)=2*e0./(1+exp(-r*(vf0(:)-s0)));
%nuovi outputs "standard" (non pesati) popolazioni di WM:
xp0(:,k+1)=xp0(:,k)+(G(1)*a(1)*zp0(:,k)-2*a(1)*xp0(:,k)-a(1)*a(1)*yp0(:,k))*dt;
yp0(:,k+1)=yp0(:,k)+xp0(:,k)*dt;
xe0(:,k+1)=xe0(:,k)+(G(1)*a(1)*(ze0(:,k)+up0(:)./C(:,2))-2*a(1)*xe0(:,k)-a(1)*a(1)*ye0(:,k))*dt;
ye0(:,k+1)=ye0(:,k)+xe0(:,k)*dt;
xs0(:,k+1)=xs0(:,k)+(G(2)*a(2)*zs0(:,k)-2*a(2)*xs0(:,k)-a(2)*a(2)*ys0(:,k))*dt;
ys0(:,k+1)=ys0(:,k)+xs0(:,k)*dt;
xl0(:,k+1)=xl0(:,k)+(G(1)*a(1)*uf1(:)-2*a(1)*xl0(:,k)-a(1)*a(1)*yl0(:,k))*dt;
yl0(:,k+1)=yl0(:,k)+xl0(:,k)*dt;
xf0(:,k+1)=xf0(:,k)+(G(3)*a(3)*zf0(:,k)-2*a(3)*xf0(:,k)-a(3)*a(3)*yf0(:,k))*dt;
yf0(:,k+1)=yf0(:,k)+xf0(:,k)*dt;
%potenziali post-sinaptici L1: (comb lin degli outputs standard)
vp1(:)=C(:,2).*ye1(:,k)-C(:,4).*ys1(:,k)-C(:,7).*yf1(:,k)+Ep1;
ve1(:)=C(:,1).*yp1(:,k);
vs1(:)=C(:,3).*yp1(:,k);
vf1(:)=C(:,6).*yp1(:,k)-C(:,5).*ys1(:,k)-C(:,8).*yf1(:,k)+yl1(:,k);
%spikes L1:
zp1(:,k)=2*e0./(1+exp(-r*(vp1(:)-s0)));
ze1(:,k)=2*e0./(1+exp(-r*(ve1(:)-s0)));
zs1(:,k)=2*e0./(1+exp(-r*(vs1(:)-s0)));
zf1(:,k)=2*e0./(1+exp(-r*(vf1(:)-s0)));
%nuovi outputs "standard" (non pesati) popolazioni L1:
xp1(:,k+1)=xp1(:,k)+(G(1)*a(1)*zp1(:,k)-2*a(1)*xp1(:,k)-a(1)*a(1)*yp1(:,k))*dt;
yp1(:,k+1)=yp1(:,k)+xp1(:,k)*dt;
xe1(:,k+1)=xe1(:,k)+(G(1)*a(1)*(ze1(:,k)+up0(:)./C(:,2))-2*a(1)*xe1(:,k)-a(1)*a(1)*ye1(:,k))*dt;
ye1(:,k+1)=ye1(:,k)+xe1(:,k)*dt;
xs1(:,k+1)=xs1(:,k)+(G(2)*a(2)*zs1(:,k)-2*a(2)*xs1(:,k)-a(2)*a(2)*ys1(:,k))*dt;
ys1(:,k+1)=ys1(:,k)+xs1(:,k)*dt;
xl1(:,k+1)=xl1(:,k)+(G(1)*a(1)*uf1(:)-2*a(1)*xl1(:,k)-a(1)*a(1)*yl1(:,k))*dt;
yl1(:,k+1)=yl1(:,k)+xl1(:,k)*dt;
xf1(:,k+1)=xf1(:,k)+(G(3)*a(3)*zf1(:,k)-2*a(3)*xf1(:,k)-a(3)*a(3)*yf1(:,k))*dt;
yf1(:,k+1)=yf1(:,k)+xf1(:,k)*dt;
end
%% sim L2 L3
%var stato L2
yp2=zeros(numero_colonne,T);
xp2=zeros(numero_colonne,T);
vp2=zeros(numero_colonne,1);
zp2=zeros(numero_colonne,T);
ye2=zeros(numero_colonne,T);
xe2=zeros(numero_colonne,T);
ve2=zeros(numero_colonne,1);
ze2=zeros(numero_colonne,T);
ys2=zeros(numero_colonne,T);
xs2=zeros(numero_colonne,T);
vs2=zeros(numero_colonne,1);
zs2=zeros(numero_colonne,T);
yf2=zeros(numero_colonne,T);
xf2=zeros(numero_colonne,T);
zf2=zeros(numero_colonne,T);
vf2=zeros(numero_colonne,1);
xl2=zeros(numero_colonne,T);
yl2=zeros(numero_colonne,T);
mf2=zeros(numero_colonne,1);
mp2=zeros(numero_colonne,1);
%var stato L3
yp3=zeros(numero_colonne,T);
xp3=zeros(numero_colonne,T);
vp3=zeros(numero_colonne,1);
zp3=zeros(numero_colonne,T);
ye3=zeros(numero_colonne,T);
xe3=zeros(numero_colonne,T);
ve3=zeros(numero_colonne,1);
ze3=zeros(numero_colonne,T);
ys3=zeros(numero_colonne,T);
xs3=zeros(numero_colonne,T);
vs3=zeros(numero_colonne,1);
zs3=zeros(numero_colonne,T);
yf3=zeros(numero_colonne,T);
xf3=zeros(numero_colonne,T);
zf3=zeros(numero_colonne,T);
vf3=zeros(numero_colonne,1);
xl3=zeros(numero_colonne,T);
yl3=zeros(numero_colonne,T);
mf3=zeros(numero_colonne,1);
mp3=zeros(numero_colonne,1);
Ep2=zeros(numero_colonne,1);
If2=zeros(numero_colonne,1);
Ep3=zeros(numero_colonne,1);
If3=zeros(numero_colonne,1);
sigma_p = sqrt(5/dt);
sigma_f = sqrt(5/dt);
rng(12)
np2 = randn(numero_colonne,T)*sigma_p;
nf2 = randn(numero_colonne,T)*sigma_f;
rng(13)
np3 = randn(numero_colonne,T)*sigma_p;
nf3 = randn(numero_colonne,T)*sigma_f;
for k=1:T-1 %ciclo nel tempo...
%completo ingressi a piramidali e gaba fast
up2=np2(:,k)+mp2;
uf2=nf2(:,k)+mf2;
up3=np3(:,k)+mp3;
uf3=nf3(:,k)+mf3;
% if(k>D_extraLayer)
% Ep2=Wp_L2L1*yp1(:,k-D_extraLayer)+Wp_L2L3*yp3(:,k-D_extraLayer);
% Ep3=Wp_L3L2*yp2(:,k-D_extraLayer);
% If2=K_L2L2*yp2(:,k-D_extraLayer)+A_L2L2*zp2(:,k-D_extraLayer);
% If3=K_L3L3*yp3(:,k-D_extraLayer)+A_L3L3*zp3(:,k-D_extraLayer);
% end
if k>D_intraLayer
Ep2=Wp_L2L1*yp1(:,k-D_intraLayer);
Ep3=Wp_L3L2*yp2(:,k-D_intraLayer);
If2=K_L2L2*yp2(:,k-D_intraLayer)+A_L2L2*zp2(:,k-D_intraLayer);
If3=K_L3L3*yp3(:,k-D_intraLayer)+A_L3L3*zp3(:,k-D_intraLayer);
% in funzione DESYNC, non ho feedback L3->L2, né inibizione in
% theta OFF.
end
%potenziali post-sinaptici: (comb lin degli outputs standard)
vp2(:)=C(:,2).*ye2(:,k)-C(:,4).*ys2(:,k)-C(:,7).*yf2(:,k)+Ep2;
ve2(:)=C(:,1).*yp2(:,k);
vs2(:)=C(:,3).*yp2(:,k);
vf2(:)=C(:,6).*yp2(:,k)-C(:,5).*ys2(:,k)-C(:,8).*yf2(:,k)+yl2(:,k)+If2;
%spikes:
zp2(:,k)=2*e0./(1+exp(-r*(vp2(:)-s0)));
ze2(:,k)=2*e0./(1+exp(-r*(ve2(:)-s0)));
zs2(:,k)=2*e0./(1+exp(-r*(vs2(:)-s0)));
zf2(:,k)=2*e0./(1+exp(-r*(vf2(:)-s0)));
%potenziali post-sinaptici: (comb lin degli outputs standard)
vp3(:)=C(:,2).*ye3(:,k)-C(:,4).*ys3(:,k)-C(:,7).*yf3(:,k)+Ep3;
ve3(:)=C(:,1).*yp3(:,k);
vs3(:)=C(:,3).*yp3(:,k);
vf3(:)=C(:,6).*yp3(:,k)-C(:,5).*ys3(:,k)-C(:,8).*yf3(:,k)+yl3(:,k)+If3;
%spikes:
zp3(:,k)=2*e0./(1+exp(-r*(vp3(:)-s0)));
ze3(:,k)=2*e0./(1+exp(-r*(ve3(:)-s0)));
zs3(:,k)=2*e0./(1+exp(-r*(vs3(:)-s0)));
zf3(:,k)=2*e0./(1+exp(-r*(vf3(:)-s0)));
xp2(:,k+1)=xp2(:,k)+(G(1)*a(1)*zp2(:,k)-2*a(1)*xp2(:,k)-a(1)*a(1)*yp2(:,k))*dt;
yp2(:,k+1)=yp2(:,k)+xp2(:,k)*dt;
xe2(:,k+1)=xe2(:,k)+(G(1)*a(1)*(ze2(:,k)+up2(:)./C(:,2))-2*a(1)*xe2(:,k)-a(1)*a(1)*ye2(:,k))*dt;
ye2(:,k+1)=ye2(:,k)+xe2(:,k)*dt;
xs2(:,k+1)=xs2(:,k)+(G(2)*a(2)*zs2(:,k)-2*a(2)*xs2(:,k)-a(2)*a(2)*ys2(:,k))*dt;
ys2(:,k+1)=ys2(:,k)+xs2(:,k)*dt;
xl2(:,k+1)=xl2(:,k)+(G(1)*a(1)*uf2(:)-2*a(1)*xl2(:,k)-a(1)*a(1)*yl2(:,k))*dt;
yl2(:,k+1)=yl2(:,k)+xl2(:,k)*dt;
xf2(:,k+1)=xf2(:,k)+(G(3)*a(3)*zf2(:,k)-2*a(3)*xf2(:,k)-a(3)*a(3)*yf2(:,k))*dt;
yf2(:,k+1)=yf2(:,k)+xf2(:,k)*dt;
xp3(:,k+1)=xp3(:,k)+(G(1)*a(1)*zp3(:,k)-2*a(1)*xp3(:,k)-a(1)*a(1)*yp3(:,k))*dt;
yp3(:,k+1)=yp3(:,k)+xp3(:,k)*dt;
xe3(:,k+1)=xe3(:,k)+(G(1)*a(1)*(ze3(:,k)+up3(:)./C(:,2))-2*a(1)*xe3(:,k)-a(1)*a(1)*ye3(:,k))*dt;
ye3(:,k+1)=ye3(:,k)+xe3(:,k)*dt;
xs3(:,k+1)=xs3(:,k)+(G(2)*a(2)*zs3(:,k)-2*a(2)*xs3(:,k)-a(2)*a(2)*ys3(:,k))*dt;
ys3(:,k+1)=ys3(:,k)+xs3(:,k)*dt;
xl3(:,k+1)=xl3(:,k)+(G(1)*a(1)*uf3(:)-2*a(1)*xl3(:,k)-a(1)*a(1)*yl3(:,k))*dt;
yl3(:,k+1)=yl3(:,k)+xl3(:,k)*dt;
xf3(:,k+1)=xf3(:,k)+(G(3)*a(3)*zf3(:,k)-2*a(3)*xf3(:,k)-a(3)*a(3)*yf3(:,k))*dt;
yf3(:,k+1)=yf3(:,k)+xf3(:,k)*dt;
end