import os
def read_data(model):
from scipy.io import loadmat
folder = model['Folder']
data_premodel = model['PreModel']
data_full = model['FullModel']
reading_folder = folder
datamodel_folder = os.path.join(os.getcwd(),reading_folder)
# Data about barrel structure (among others)
filename = data_premodel
reading_filename = os.path.join(datamodel_folder,filename)
inst_premodel = loadmat(reading_filename, struct_as_record=False, squeeze_me=True)
# Structured data about cells and connections
filename = data_full
reading_filename = os.path.join(datamodel_folder,filename)
inst_model = loadmat(reading_filename, struct_as_record=False, squeeze_me=True)
return inst_premodel, inst_model
def read_input(Input):
option = Input['Option']
folder = Input['Folder']
filename = Input['Filename']
reading_folder = folder
datamodel_folder = os.path.join(os.getcwd(),reading_folder)
if option == 'Svoboda':
# Psth and spike trains from Svoboda dataset
from scipy.io import loadmat
inst_input = loadmat(os.path.join(datamodel_folder,filename), struct_as_record=False, squeeze_me=True)
elif option == 'Multitrial':
# Psth data from Aguilar's paper
import pandas as pd
inst_input = pd.read_csv(os.path.join(datamodel_folder,filename), sep=" ", header=None)
else:
print('Input option not available')
return inst_input
|