CA3 Pyramidal Neuron (Migliore et al 1995)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:3263
Model files from the paper: M. Migliore, E. Cook, D.B. Jaffe, D.A. Turner and D. Johnston, Computer simulations of morphologically reconstructed CA3 hippocampal neurons, J. Neurophysiol. 73, 1157-1168 (1995). Demonstrates how the same cell could be bursting or non bursting according to the Ca-independent conductance densities. Includes calculation of intracellular Calcium. Instructions are provided in the below README file. Contact michele.migliore@pa.ibf.cnr.it if you have any questions about the implementation of the model.
Reference:
1 . Migliore M, Cook EP, Jaffe DB, Turner DA, Johnston D (1995) Computer simulations of morphologically reconstructed CA3 hippocampal neurons. J Neurophysiol 73:1157-68 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA3 pyramidal cell;
Channel(s): I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I K,Ca; I Calcium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Bursting; Detailed Neuronal Models; Synaptic Integration;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal cell; I Na,t; I L high threshold; I N; I T low threshold; I A; I K; I M; I K,Ca; I Calcium;
/
ca3_db
README.txt
borgka.mod
borgkm.mod *
cadiv.mod *
cagk.mod *
cal2.mod *
can2.mod *
cat.mod *
kahp.mod *
kdr.mod *
nahh.mod *
ca3a.geo
mosinit.hoc
test_a.hoc
                            
TITLE nahh 
: From Traub & Miles "Neuronal networks of the hippocampus" (1991)
: but m^3 instead of m^2
NEURON {
	SUFFIX nahh
	USEION na READ ena WRITE ina
	RANGE gnabar
	GLOBAL inf,tau
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

PARAMETER {
	v (mV)
	celsius		(degC)
	gnabar=.300 	(mho/cm2)
	ena 		(mV)
}
STATE {
	m h
}
ASSIGNED {
	ina (mA/cm2)
	inf[2]
        tau[2]
}

INITIAL {
         mhn(v)
         m=inf[0]
         h=inf[1]
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	ina = gnabar*m*m*m*h*(v - ena)
}

DERIVATIVE states {	
	mhn(v*1(/mV))
	m' = (inf[0] - m)/tau[0]
	h' = (inf[1] - h)/tau[1]
}


FUNCTION alp(v(mV),i) { LOCAL q10 :  order m,h
        v=v+65
	q10 = 3^((celsius - 30)/10)
	if (i==0) {
		alp = q10*.32*expM1(13.1-v, 4)
	}else if (i==1){
		alp = q10*.128*exp((17-v)/18)
	}
}

FUNCTION bet(v,i) { LOCAL q10 : order m,h
        v=v+65
	q10 = 3^((celsius - 30)/10)
	if (i==0) {
		bet = q10*.28*expM1(v-40.1,5)
	}else if (i==1){
		bet = q10*4/(exp((40.0-v)/5) + 1)
	}
}

FUNCTION expM1(x,y) {
	if (fabs(x/y) < 1e-6) {
		expM1 = y*(1 - x/y/2)
	}else{
		expM1 = x/(exp(x/y) - 1)
	}
}

PROCEDURE mhn(v) {LOCAL a, b 
	FROM i=0 TO 1 {
		a = alp(v,i)  
		b=bet(v,i)
		tau[i] = 1/(a + b)
		inf[i] = a/(a + b)
	}
}