Enhanced Excitability in Hermissenda: modulation by 5-HT (Cai et al 2003)

 Download zip file 
Help downloading and running models
Accession:34163
Serotonin (5-HT) applied to the exposed but otherwise intact nervous system results in enhanced excitability of Hermissenda type-B photoreceptors. Several ion currents in the type-B photoreceptors are modulated by 5-HT, including the A-type K+ current (IK,A), sustained Ca2+ current (ICa,S), Ca-dependent K+ current (IK,Ca), and a hyperpolarization-activated inward rectifier current (Ih). In this study,we developed a computational model that reproduces physiological characteristics of type B photoreceptors, e.g. resting membrane potential, dark-adapted spike activity, spike width, and the amplitude difference between somatic and axonal spikes. We then used the model to investigate the contribution of different ion currents modulated by 5-HT to the magnitudes of enhanced excitability produced by 5-HT. See paper for results and more details.
Reference:
1 . Cai Y, Baxter DA, Crow T (2003) Computational study of enhanced excitability in Hermissenda: membrane conductances modulated by 5-HT. J Comput Neurosci 15:105-21 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Hermissenda photoreceptor Type B;
Channel(s): I Na,t; I L high threshold; I N; I A; I K; I h; I K,Ca; I Calcium; I A, slow;
Gap Junctions: Gap junctions;
Receptor(s):
Gene(s):
Transmitter(s): Serotonin;
Simulation Environment: SNNAP;
Model Concept(s): Activity Patterns; Action Potentials; Invertebrate;
Implementer(s): Cai, Yidao;
Search NeuronDB for information about:  I Na,t; I L high threshold; I N; I A; I K; I h; I K,Ca; I Calcium; I A, slow; Serotonin;
 
/
Cai
                            
File not selected

<- Select file from this column.