Retinal Ganglion Cell: I-Na,t (Benison et al 2001)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:3483
NEURON mod files for the Na current from the papers: (model) Benison G, Keizer J, Chalupa LM, Robinson DW. Modeling temporal behavior of postnatal cat retinal ganglion cells. J Theor Biol. 2001 210:187-99 and a reference from this paper: (experimental) Skaliora I, Scobey RP, Chalupa LM. Prenatal development of excitability in cat retinal ganglion cells: action potentials and sodium currents. J Neurosci 1993 13:313-23. See the readme.txt file below for more information.
Reference:
1 . Benison G, Keizer J, Chalupa LM, Robinson DW (2001) Modeling temporal behavior of postnatal cat retinal ganglion cells. J Theor Biol 210:187-99 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Channel/Receptor;
Brain Region(s)/Organism:
Cell Type(s): Retina ganglion GLU cell;
Channel(s): I Na,t; I Sodium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Ion Channel Kinetics;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Retina ganglion GLU cell; I Na,t; I Sodium;
create a
a	{nseg=1 diam=5 L=5 
	insert nargc ena=55
	insert pas g_pas=1/10000 Ra=150 cm=1}
access a

tstop=5
vlow=-120
vhigh=30
dt=0.01
celsius=22

objref gk, b,gt,vc, gs,c, gf,ic
b = new VBox()
c = new VBox()
b.intercept(1)
gk = new Graph(0)
gk.view(vlow,0,vhigh-vlow,1,0,0,100,200)
gk.exec_menu("New Axis")
gk.exec_menu("10% Zoom out")
gk.label(0.1,0.9,"Steady-states")
gk.addexpr("minf_nargc",3,2, 2*tstop,0,2)
gk.addexpr("hinf_nargc",2,2, 2*tstop,0,2)

gt = new Graph(0)
gt.view(vlow,0,vhigh-vlow,4,0,0,100,200)
gt.exec_menu("New Axis")
gt.exec_menu("10% Zoom out")
gt.label(0.1,0.9,"time constants")
gt.addexpr("mtau_nargc*10",3,2, 2*tstop,0,2)
gt.addexpr("htau_nargc",2,2, 2*tstop,0,2)

xpanel("")
xbutton("run ", "run()")
xpanel()
b.intercept(0)
b.map("Na kinetics for RGC",100,0,200,400)

c.intercept(1)
gs = new Graph(0)
gs.view(0,-1300,tstop,1300,0,0,100,200)
gs.exec_menu("New Axis")
gs.exec_menu("10% Zoom out")
gs.label(0.1,0.9,"current (pA), Fig.6C, step from -90mV")
gs.exec_menu("Keep Lines")

c.intercept(0)
c.map("activation",390,0,500,370)

vc = new SEClamp(0.5)

proc run() {
gk.begin()
for (v=vlow; v<vhigh; v=v+1) {
    trates_nargc(v)
    gk.plot(v)
}
gk.flush()
doNotify()

gt.begin()
gt.color(2)
gt.label(0.1,0.4,"tau_inact.")
gt.color(3)
gt.label(0.4,0.17,"tau_act.*10")
for (v=vlow; v<vhigh; v=v+1) {
    trates_nargc(v)
    gt.plot(v)
}
gt.flush()
doNotify()


gbar_nargc=0.07
gs.color(2)
gs.label(0.4,0.6,"-30")
gs.color(3)
gs.label(0.4,0.5,"-15")
gs.color(4)
gs.label(0.4,0.4,"0")
gs.color(7)
gs.label(0.4,0.3,"45")

gs.begin()
k=-45
color=1
while (k<56) {
gs.addexpr("ina*area(0.5)*10",color,1, 2*tstop,0,2) // *10=pA, *1e-2=nA
t=0
vc.amp1=-90
vc.dur1=0.2
vc.amp2=k
vc.dur2=tstop
forall {finitialize(vc.amp1)}
while (t<tstop) {
    fadvance()
    gs.plot(t)
    }
gs.flush()
doNotify()
k=k+15
color=color+1
gs.begin()
}
}