Visual Cortex Neurons: Dendritic study (Anderson et al 1999)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:3812
Neuron mod and hoc files for the paper: Anderson, J.C. Binzegger, T., Kahana, O., Segev, I., and Martin, K.A.C Dendritic asymmetry cannot account for directional responses in visual cortex. Nature Neuroscience 2:820:824, 1999
Reference:
1 . Anderson JC, Binzegger T, Kahana O, Martin KA, Segev I (1999) Dendritic asymmetry cannot account for directional responses of neurons in visual cortex. Nat Neurosci 2:820-4 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Visual cortex;
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s): AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Pattern Recognition; Influence of Dendritic Geometry;
Implementer(s): Khana, Oz;
Search NeuronDB for information about:  AMPA; NMDA;
/
anderson
Cells
Files
sim_hoc_files
README
nmda.mod
two_exp.mod
mosinit.hoc
mosinit.ses
                            
COMMENT
Two exponents synapse.
Written by Oz Kahana 23.4.99

risetime = time to peak
tfast    = tau fast
tslow    = tau slow

gmax = amp

g = gmax*(-Ar*exp(-t/rt) + Af*exp(-t/tf) + As*exp(-t/ts))

according to Galarreta and Hastrin - J.Neurosci., October 1, 1997, 17(7220-7227)
Af = 76%
As = 24%
Ar = 100%


ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
  POINT_PROCESS two_exp_syn1
	RANGE Ar, Af, As, onset, risetime, tslow, tfast, gmax, e, i, g
	NONSPECIFIC_CURRENT i
}
UNITS {
	(nA) = (nanoamp)
	(mV) = (millivolt)
	(umho) = (micromho)
}

PARAMETER {
	onset = 0 (ms)
        risetime = 0.5
	tfast = 7.5 (ms)
        tslow = 33
	gmax  = 0.01 (umho)
	e = 0	(mV)
	v	(mV)
        Af = 0.76
        Ar = 1.00
        As = 0.24
        cst
        T
}

INITIAL {
  T = -log(Af*risetime/(Ar*tfast))/(1/risetime - 1/tfast)
  cst = 1/(Af*exp(-T/tfast)-Ar*exp(-T/risetime)+(As*exp(-T/tslow)))
}

ASSIGNED { i (nA)  g (umho)}

BREAKPOINT {
        g = get_g()
	i = g*(v - e)
}

FUNCTION get_g() {
   if ((t>onset) && ((((t-onset)/risetime)<10) && (((t-onset)/tfast)<10) && (((t-onset)/tslow)<10))) {
     get_g = gmax*cst*(-Ar*exp(-(t-onset)/risetime) + Af*exp(-(t-onset)/tfast) + As*exp(-(t-onset)/tslow))
   }
   else
   {
   get_g = 0
   }
}