Bursting and resonance in cerebellar granule cells (D'Angelo et al. 2001)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:46839
In this study we report theta-frequency (3-12 Hz) bursting and resonance in rat cerebellar granule cells and show that these neurons express a previously unidentified slow repolarizing K1 current (IK-slow ). Our experimental and modeling results indicate that IK-slow was necessary for both bursting and resonance. See paper for more.
Reference:
1 . D'Angelo E, Nieus T, Maffei A, Armano S, Rossi P, Taglietti V, Fontana A, Naldi G (2001) Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow k+-dependent mechanism. J Neurosci 21:759-70 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Cerebellum interneuron granule GLU cell;
Channel(s): I A; I K; I h; I Calcium; I A, slow;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Bursting; Ion Channel Kinetics; Oscillations;
Implementer(s): D'Angelo, Egidio [dangelo at unipv.it];
Search NeuronDB for information about:  Cerebellum interneuron granule GLU cell; I A; I K; I h; I Calcium; I A, slow;
TITLE Cerebellum Granule Cell Model

COMMENT
	Reference: Theta-Frequency Bursting and Resonance in Cerebellar Granule Cells:Experimental
	Evidence and Modeling of a Slow K+-Dependent Mechanism
	Egidio D'Angelo,Thierry Nieus,Arianna Maffei,Simona Armano,Paola Rossi,Vanni Taglietti,
	Andrea Fontana and Giovanni Naldi
ENDCOMMENT

NEURON { 
	SUFFIX GrG_KV 
	USEION k READ ek WRITE ik 
	RANGE gkbar, ik, g, alpha_n, beta_n 
	RANGE Aalpha_n, Kalpha_n, V0alpha_n
	RANGE Abeta_n, Kbeta_n, V0beta_n
	RANGE n_inf, tau_n 
} 
 
UNITS { 
	(mA) = (milliamp) 
	(mV) = (millivolt) 
} 
 
PARAMETER { 
	:Kbeta_n = -0.0125 (/mV)
	
	Aalpha_n = -0.01 (/ms-mV)
	Kalpha_n = -10 (mV)
	V0alpha_n = -25 (mV)
	Abeta_n = 0.125 (/ms)
	
	Kbeta_n = -80 (mV)
	V0beta_n = -35 (mV)
	v (mV)  
	gkbar= 0.003 (mho/cm2) 
	ek = -84.69 (mV) 
	celsius = 30 (degC) 
} 

STATE { 
	n 
} 

ASSIGNED { 
	ik (mA/cm2) 
	n_inf 
	tau_n (ms) 
	g (mho/cm2) 
	alpha_n (/ms) 
	beta_n (/ms) 
} 
 
INITIAL { 
	rate(v) 
	n = n_inf 
} 
 
BREAKPOINT { 
	SOLVE states METHOD derivimplicit 
	g = gkbar*n*n*n*n 
	ik = g*(v - ek) 
	alpha_n = alp_n(v) 
	beta_n = bet_n(v) 
} 
 
DERIVATIVE states { 
	rate(v) 
	n' =(n_inf - n)/tau_n 
} 
 
FUNCTION alp_n(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-6.3(degC))/10(degC)) 
	alp_n = Q10*Aalpha_n*linoid(v-V0alpha_n, Kalpha_n)
} 
 
FUNCTION bet_n(v(mV))(/ms) { LOCAL Q10
	Q10 = 3^((celsius-6.3(degC))/10(degC)) 
	bet_n = Q10*Abeta_n*exp((v-V0beta_n)/Kbeta_n) 
} 
 
PROCEDURE rate(v (mV)) {LOCAL a_n, b_n 
	TABLE n_inf, tau_n 
	DEPEND Aalpha_n, Kalpha_n, V0alpha_n, 
               Abeta_n, Kbeta_n, V0beta_n, celsius FROM -100 TO 100 WITH 200 
	a_n = alp_n(v)  
	b_n = bet_n(v) 
	tau_n = 1/(a_n + b_n) 
	n_inf = a_n/(a_n + b_n) 
} 

FUNCTION linoid(x (mV),y (mV)) (mV) {
        if (fabs(x/y) < 1e-6) {
                linoid = y*(1 - x/y/2)
        }else{
                linoid = x/(exp(x/y) - 1)
        }
}