Dentate gyrus network model (Santhakumar et al 2005)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:51781
Mossy cell loss and mossy fiber sprouting are two characteristic consequences of repeated seizures and head trauma. However, their precise contributions to the hyperexcitable state are not well understood. Because it is difficult, and frequently impossible, to independently examine using experimental techniques whether it is the loss of mossy cells or the sprouting of mossy fibers that leads to dentate hyperexcitability, we built a biophysically realistic and anatomically representative computational model of the dentate gyrus to examine this question. The 527-cell model, containing granule, mossy, basket, and hilar cells with axonal projections to the perforant-path termination zone, showed that even weak mossy fiber sprouting (10-15% of the strong sprouting observed in the pilocarpine model of epilepsy) resulted in the spread of seizure-like activity to the adjacent model hippocampal laminae after focal stimulation of the perforant path. See reference for more and details.
Reference:
1 . Santhakumar V, Aradi I, Soltesz I (2005) Role of mossy fiber sprouting and mossy cell loss in hyperexcitability: a network model of the dentate gyrus incorporating cell types and axonal topography. J Neurophysiol 93:437-53 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Dentate gyrus;
Cell Type(s): Dentate gyrus granule cell; Dentate gyrus mossy cell; Dentate gyrus basket cell; Dentate gyrus hilar cell;
Channel(s): I L high threshold; I T low threshold; I K; I h; I K,Ca; I Calcium; I Potassium;
Gap Junctions:
Receptor(s): GabaA; AMPA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON; neuroConstruct (web link to model);
Model Concept(s): Activity Patterns; Spatio-temporal Activity Patterns; Axonal Action Potentials; Epilepsy; Synaptic Integration;
Implementer(s): Santhakumar, Vijayalakshmi [santhavi at umdnj.edu];
Search NeuronDB for information about:  Dentate gyrus granule cell; GabaA; AMPA; I L high threshold; I T low threshold; I K; I h; I K,Ca; I Calcium; I Potassium;
Files displayed below are from the implementation
/
dentategyrusnet2005
readme.html *
bgka.mod *
CaBK.mod *
ccanl.mod *
Gfluct2.mod *
gskch.mod *
hyperde3.mod *
ichan2.mod *
LcaMig.mod *
nca.mod *
tca.mod *
DG500_M7.hoc *
dgnetactivity.jpg *
dgnettraces.jpg *
mosinit.hoc *
RI10sp.hoc
testnet.hoc
                            
TITLE T-calcium channel From Migliore CA3
: T-type calcium channel


UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

	FARADAY = 96520 (coul)
	R = 8.3134 (joule/degC)
	KTOMV = .0853 (mV/degC)
}

PARAMETER {
	v (mV)
	celsius = 6.3	(degC)
	gcatbar=.003 (mho/cm2)
	cai (mM)
	cao (mM)
}


NEURON {
	SUFFIX cat
	USEION tca READ etca WRITE itca VALENCE 2
	USEION ca READ cai, cao VALENCE 2
        RANGE gcatbar,cai, itca, etca
}

STATE {
	m h 
}

ASSIGNED {
	itca (mA/cm2)
        gcat (mho/cm2)
	etca (mV)
}

INITIAL {
      m = minf(v)
      h = hinf(v)
	VERBATIM
	cai=_ion_cai;
	ENDVERBATIM
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	gcat = gcatbar*m*m*h
	itca = gcat*ghk(v,cai,cao)

}

DERIVATIVE states {	: exact when v held constant
	m' = (minf(v) - m)/m_tau(v)
	h' = (hinf(v) - h)/h_tau(v)
}


FUNCTION ghk(v(mV), ci(mM), co(mM)) (mV) {
        LOCAL nu,f

        f = KTF(celsius)/2
        nu = v/f
        ghk=-f*(1. - (ci/co)*exp(nu))*efun(nu)
}

FUNCTION KTF(celsius (DegC)) (mV) {
        KTF = ((25./293.15)*(celsius + 273.15))
}


FUNCTION efun(z) {
	if (fabs(z) < 1e-4) {
		efun = 1 - z/2
	}else{
		efun = z/(exp(z) - 1)
	}
}

FUNCTION hinf(v(mV)) {
	LOCAL a,b
	TABLE FROM -150 TO 150 WITH 200
	a = 1.e-6*exp(-v/16.26)
	b = 1/(exp((-v+29.79)/10)+1)
	hinf = a/(a+b)
}

FUNCTION minf(v(mV)) {
	LOCAL a,b
	TABLE FROM -150 TO 150 WITH 200
        
	a = 0.2*(-1.0*v+19.26)/(exp((-1.0*v+19.26)/10.0)-1.0)
	b = 0.009*exp(-v/22.03)
	minf = a/(a+b)
}

FUNCTION m_tau(v(mV)) (ms) {
	LOCAL a,b
	TABLE FROM -150 TO 150 WITH 200
	a = 0.2*(-1.0*v+19.26)/(exp((-1.0*v+19.26)/10.0)-1.0)
	b = 0.009*exp(-v/22.03)
	m_tau = 1/(a+b)
}

FUNCTION h_tau(v(mV)) (ms) {
	LOCAL a,b
        TABLE FROM -150 TO 150 WITH 200
	a = 1.e-6*exp(-v/16.26)
	b = 1/(exp((-v+29.79)/10.)+1.)
	h_tau = 1/(a+b)
}