Midbrain dopamine neuron: firing patterns (Canavier 1999)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:6763
Sodium dynamics drives the generation of slow oscillations postulated to underly NMDA-evoked bursting activity.
Reference:
1 . Canavier CC (1999) Sodium dynamics underlying burst firing and putative mechanisms for the regulation of the firing pattern in midbrain dopamine neurons: a computational approach. J Comput Neurosci 6:49-69 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Electrogenic pump;
Brain Region(s)/Organism:
Cell Type(s): Substantia nigra pars compacta DA cell;
Channel(s): Na/K pump;
Gap Junctions:
Receptor(s): NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Activity Patterns; Oscillations; Sodium pump;
Implementer(s): Canavier, CC;
Search NeuronDB for information about:  Substantia nigra pars compacta DA cell; NMDA; Na/K pump;
COMMENT
Longitudinal diffusion of sodium (no buffering)
(equivalent modified euler with standard method and
equivalent to diagonalized linear solver with CVODE )
ENDCOMMENT

NEURON {
	SUFFIX nadifl
	USEION na READ ina WRITE nai
	RANGE D
}

UNITS {
	(mM) = (milli/liter)
	(um) = (micron)
	FARADAY = (faraday) (coulomb)
	PI = (pi) (1)
}

PARAMETER {
	D = .6 (um2/ms)
}

ASSIGNED {
	ina (milliamp/cm2)
	diam (um)
}

STATE {
	nai (mM)
}

BREAKPOINT {
	SOLVE conc METHOD sparse
}

KINETIC conc {
	COMPARTMENT PI*diam*diam/4 {nai}
	LONGITUDINAL_DIFFUSION D {nai}
	~ nai << (-ina/(FARADAY)*PI*diam*(1e4))
}