Cerebellar purkinje cell (De Schutter and Bower 1994)

 Download zip file 
Help downloading and running models
Accession:7176
Tutorial simulation of a cerebellar Purkinje cell. This tutorial is based upon a GENESIS simulation of a cerebellar Purkinje cell, modeled and fine-tuned by Erik de Schutter. The tutorial assumes that you have a basic knowledge of the Purkinje cell and its synaptic inputs. It gives visual insight in how different properties as concentrations and channel conductances vary and interact within a real Purkinje cell.
Reference:
1 . De Schutter E, Bower JM (1994) An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. J Neurophysiol 71:375-400 [PubMed]
2 . De Schutter E, Bower JM (1994) An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses. J Neurophysiol 71:401-19 [PubMed]
3 . Staub C, De Schutter E, Knöpfel T (1994) Voltage-imaging and simulation of effects of voltage- and agonist-activated conductances on soma-dendritic voltage coupling in cerebellar Purkinje cells. J Comput Neurosci 1:301-11 [PubMed]
4 . De Schutter E, Bower JM (1994) Simulated responses of cerebellar Purkinje cells are independent of the dendritic location of granule cell synaptic inputs. Proc Natl Acad Sci U S A 91:4736-40 [PubMed]
5 . De Schutter E (1998) Dendritic voltage and calcium-gated channels amplify the variability of postsynaptic responses in a Purkinje cell model. J Neurophysiol 80:504-19 [PubMed]
6 . Jaeger D, De Schutter E, Bower JM (1997) The role of synaptic and voltage-gated currents in the control of Purkinje cell spiking: a modeling study. J Neurosci 17:91-106 [PubMed]
7 . de Schutter E (1994) Modelling the cerebellar Purkinje cell: experiments in computo. Prog Brain Res 102:427-41 [PubMed]
8 . De Schutter E (1997) A new functional role for cerebellar long-term depression. Prog Brain Res 114:529-42 [PubMed]
9 . Steuber V, Mittmann W, Hoebeek FE, Silver RA, De Zeeuw CI, Häusser M, De Schutter E (2007) Cerebellar LTD and pattern recognition by Purkinje cells. Neuron 54:121-36 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Cerebellum Purkinje GABA cell;
Channel(s): I Na,p; I Na,t; I T low threshold; I p,q; I A; I K; I M; I K,Ca; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: GENESIS;
Model Concept(s): Activity Patterns; Dendritic Action Potentials; Active Dendrites; Detailed Neuronal Models; Tutorial/Teaching; Synaptic Integration;
Implementer(s): Cornelis, Hugo [hugo at bbf.uia.ac.be]; Airong, Dong [tard at fimmu.com];
Search NeuronDB for information about:  Cerebellum Purkinje GABA cell; I Na,p; I Na,t; I T low threshold; I p,q; I A; I K; I M; I K,Ca; I Sodium; I Calcium; I Potassium;
This directory contains various patches to some version of the
original Purkinje cell tutorial.  Perhaps they can't be applied
anymore perhaps they can.  The original versions that were used to
create the patch are implied in the filename.  The last part of the
filename gives some clue about the function change in the patch
(e.g. the AnyChanMode patch runs the model with hsolve in any chanmode
or even without hsolve).

Take a look at the different scripts/patches and see if you can use
them one way or the other.  No support will be given for any of the
patches in this directory.


A patch is typically applied with ('$' being the shell prompt)

$ patch <'filename.patch' -p1


To remove a successfully applied patch

$ patch <'filename.patch' -p1 -R