AP shape and parameter constraints in optimization of compartment models (Weaver and Wearne 2006)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:87473
"... We construct an objective function that includes both time-aligned action potential shape error and errors in firing rate and firing regularity. We then implement a variant of simulated annealing that introduces a recentering algorithm to handle infeasible points outside the boundary constraints. We show how our objective function captures essential features of neuronal firing patterns, and why our boundary management technique is superior to previous approaches."
Reference:
1 . Weaver CM, Wearne SL (2006) The role of action potential shape and parameter constraints in optimization of compartment models Neurocomputing 69:1053-1057
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Vestibular neuron;
Channel(s): I Na,p; I Na,t; I A; I K,Ca;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Parameter Fitting; Methods;
Implementer(s): Weaver, Christina [christina.weaver at fandm.edu];
Search NeuronDB for information about:  I Na,p; I Na,t; I A; I K,Ca;
0.1 111 103 145.27317    -6.77971 -4.01467 -5.34141 -4.59572 -4.65069 -6.29806 -7.55492 -10.6667 
0.09 213 207 142.28027    -9.01418 -5.47239 -3.06448 -7.2927 -3.84937 -4.67407 -6.34353 -9.60782 
0.081 315 309 128.20581    -9.53083 -5.45698 -3.43645 -6.58155 -4.08799 -4.37428 -6.52293 -8.88316 
0.0729 417 408 126.01554    -9.84152 -5.16119 -3.58156 -6.10409 -4.0608 -4.31257 -6.97126 -8.87978 
0.06561 519 508 125.77724    -9.94169 -5.04457 -3.67273 -5.92663 -4.06626 -4.29895 -7.1532 -8.87704 
0.059049 620 606 124.52176    -9.52799 -5.36482 -3.84988 -6.4703 -4.19688 -4.41112 -6.88947 -8.88413 
0.0531441 722 705 124.49505    -9.51366 -5.37478 -3.88121 -6.44611 -4.20828 -4.41409 -6.90478 -8.87314 
0.0478297 824 804 124.49146    -9.54398 -5.34987 -3.86912 -6.423 -4.19696 -4.40674 -6.92594 -8.882 
0.0430467 925 904 124.49146    -9.54398 -5.34987 -3.86912 -6.423 -4.19696 -4.40674 -6.92594 -8.882 
0.038742 1026 988 124.49146    -9.54398 -5.34987 -3.86912 -6.423 -4.19696 -4.40674 -6.92594 -8.882 
0.0348678 1128 1074 124.49069    -9.58301 -5.33274 -3.83674 -6.44358 -4.18407 -4.39565 -6.94877 -8.87664 
0.0313811 1229 1158 124.48885    -9.59676 -5.31861 -3.82818 -6.4308 -4.17946 -4.39361 -6.9532 -8.8788 
0.028243 1330 1243 124.48384    -9.59953 -5.33495 -3.8232 -6.43731 -4.17196 -4.38709 -6.95886 -8.88389 
0.0254187 1432 1328 124.48384    -9.59953 -5.33495 -3.8232 -6.43731 -4.17196 -4.38709 -6.95886 -8.88389 
0.0228768 1534 1413 124.48384    -9.59953 -5.33495 -3.8232 -6.43731 -4.17196 -4.38709 -6.95886 -8.88389 
0.0205891 1635 1498 124.47489    -9.59159 -5.36579 -3.7743 -6.50133 -4.16177 -4.38244 -6.9279 -8.87473 
0.0185302 1736 1605 124.46522    -9.43563 -5.46635 -3.89191 -6.44694 -4.20922 -4.4195 -6.85102 -8.88229 
0.0166772 1837 1708 124.46095    -9.43235 -5.4822 -3.87827 -6.46456 -4.20485 -4.41613 -6.84203 -8.88038 
0.0150095 1938 1819 124.44602    -9.51364 -5.44227 -3.81512 -6.48519 -4.17119 -4.39064 -6.90862 -8.88513 
0.0135085 2039 1935 124.44059    -9.48488 -5.47404 -3.81984 -6.49431 -4.17513 -4.39365 -6.88379 -8.88311 
0.0121577 2141 2035 124.4347     -9.48012 -5.49792 -3.80211 -6.544 -4.16786 -4.39034 -6.8709 -8.88798 
0.0109419 2243 2126 124.424      -9.42749 -5.53567 -3.83949 -6.52418 -4.18239 -4.40159 -6.83869 -8.88943 
0.00984771 2344 2207 124.39711    -9.58245 -5.5338 -3.65159 -6.62022 -4.09427 -4.33509 -6.90357 -8.8852 
0.00886294 2445 2293 124.00563    -8.78976 -6.82297 -3.69346 -7.43491 -4.08915 -4.38162 -6.06679 -8.9694 
0.00797664 2547 2375 122.81908    -8.71892 -7.50202 -3.31816 -8.82726 -3.94349 -4.4281 -5.21786 -9.13766 
0.00717898 2648 2455 122.26319    -8.89739 -7.31575 -3.03062 -9.36678 -3.90621 -4.4927 -4.97827 -9.17138 
0.00646108 2749 2526 121.57799    -9.14302 -7.35719 -2.30395 -10.1752 -3.6491 -4.36142 -4.88478 -9.26303 
0.00581497 2850 2586 121.51335    -9.1899 -7.31841 -2.3033 -10.1902 -3.64092 -4.35836 -4.90301 -9.2776 
0.00523348 2952 2660 121.40988    -9.36879 -7.07738 -2.31219 -10.2581 -3.64584 -4.3897 -4.93074 -9.31695 
0.00471013 3054 2737 121.10053    -9.74083 -6.53432 -2.3047 -10.4769 -3.66431 -4.50172 -4.888 -9.42871 
0.00423912 3155 2808 120.85905    -9.75906 -6.40218 -2.30304 -10.5614 -3.70033 -4.59008 -4.74743 -9.46287 
0.0038152 3256 2877 120.84634    -9.75976 -6.40345 -2.30283 -10.5618 -3.69975 -4.58931 -4.74788 -9.46291 
0.00343368 3357 2962 120.84522    -9.75836 -6.40461 -2.3026 -10.5619 -3.69987 -4.58963 -4.74675 -9.46292 
0.00309032 3458 3049 120.84522    -9.75836 -6.40461 -2.3026 -10.5619 -3.69987 -4.58963 -4.74675 -9.46292 
0.00278128 3560 3137 120.84417    -9.76004 -6.40301 -2.30276 -10.5623 -3.69974 -4.58959 -4.74738 -9.46324 
0.00250316 3662 3224 120.84417    -9.76004 -6.40301 -2.30276 -10.5623 -3.69974 -4.58959 -4.74738 -9.46324 
0.00225284 3763 3313 120.84417    -9.76004 -6.40301 -2.30276 -10.5623 -3.69974 -4.58959 -4.74738 -9.46324 
0.00202756 3865 3401 120.84417    -9.76004 -6.40301 -2.30276 -10.5623 -3.69974 -4.58959 -4.74738 -9.46324 
0.0018248 3966 3485 120.84303    -9.75715 -6.40892 -2.30261 -10.5613 -3.6993 -4.58827 -4.74721 -9.4621 
0.00164232 4068 3555 120.84207    -9.75621 -6.40955 -2.30272 -10.5613 -3.69955 -4.58877 -4.74604 -9.46209 
0.00147809 4169 3629 120.84081    -9.75925 -6.40583 -2.3027 -10.5624 -3.69936 -4.58916 -4.7467 -9.46315 
0.00133028 4270 3718 120.574      -9.89935 -6.18944 -2.30871 -10.6656 -3.709 -4.67576 -4.65263 -9.5506 
0.00119725 4371 3816 120.44788    -9.99161 -6.01591 -2.32646 -10.7251 -3.7277 -4.76221 -4.56395 -9.61944 
0.00107753 4472 3909 120.44348    -10.0097 -5.99171 -2.32774 -10.7311 -3.72762 -4.76721 -4.56498 -9.62665 
0.000969774 4564 3987 120.44257    -10.0178 -5.98201 -2.3281 -10.733 -3.72715 -4.76803 -4.56775 -9.62909