Olfactory bulb network model of gamma oscillations (Bathellier et al. 2006; Lagier et al. 2007)

 Download zip file 
Help downloading and running models
Accession:91387
This model implements a network of 100 mitral cells connected with asynchronous inhibitory "synapses" that is meant to reproduce the GABAergic transmission of ensembles of connected granule cells. For appropriate parameters of this special synapse the model generates gamma oscillations with properties very similar to what is observed in olfactory bulb slices (See Bathellier et al. 2006, Lagier et al. 2007). Mitral cells are modeled as single compartment neurons with a small number of different voltage gated channels. Parameters were tuned to reproduce the fast subthreshold oscillation of the membrane potential observed experimentally (see Desmaisons et al. 1999).
Reference:
1 . Bathellier B, Lagier S, Faure P, Lledo PM (2006) Circuit properties generating gamma oscillations in a network model of the olfactory bulb. J Neurophysiol 95:2678-91 [PubMed]
2 . Lagier S, Panzanelli P, Russo RE, Nissant A, Bathellier B, Sassoè-Pognetto M, Fritschy JM, Lledo PM (2007) GABAergic inhibition at dendrodendritic synapses tunes gamma oscillations in the olfactory bulb. Proc Natl Acad Sci U S A 104:7259-64 [PubMed]
3 . Bathellier B, Lagier S, Faure P, Lledo PM (2006) Corrigendum for Bathellier et al., J Neurophysiol 95 (4) 2678-2691. J Neurophysiol 95:3961-3962
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell;
Channel(s): I Na,p; I Na,t; I A; I K;
Gap Junctions:
Receptor(s): GabaA;
Gene(s):
Transmitter(s):
Simulation Environment: C or C++ program;
Model Concept(s): Oscillations; Delay; Olfaction;
Implementer(s):
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; GabaA; I Na,p; I Na,t; I A; I K;
/**************************************************************************

	AlphaSyn.h													JJS 9/13/95
	
		part of CONICAL, the Computational Neuroscience Class Library
	
	This file implements a classic "alpha function" synapse.  When the
	voltage in the presynaptic compartment (i.e., the VSource) exceeds
	a threshold Vthresh, the alpha function is initiated.  A fixed
	conductance change ensues, following a double exponential specified
	by tau1 and tau2.  The function cannot be started again until
	refractTime has passed.

	Requires:
		Synapse			-- base class
		
**************************************************************************/

#ifndef ALPHASYNI_H
#define ALPHASYNI_H
#include<math.h>
#include "Synapse.h"
#include "NoiseSource.h"

class AlphaSynI : public Synapse
{
  public:
     
	AlphaSynI( VSink *pTo, VSource *pComp, real pMaxG=0, real pF=50 ,real pT1=0.05,real pT2=0.100, real pFst=100, real pMean=0.5)		// constructor
	: Synapse( pTo, pComp, pMaxG ), tau1(0), tau2(0), SynEv(0),T(0), Mn(pMean), T1(pT1), T2(pT2),Fsat(pFst),Freqmax(pF) {}
	
	virtual void Step( const real dt );		// update G
    virtual void Init(const real dt);
    
    
//Setter
	
	real GetgMax(real dt){
                            
           real dtau = tau1-tau2;
           return  (exp(- tau2 /dtau *log(tau1/tau2)) - exp(-tau1 /dtau *log(tau1/tau2)))*dt/dtau ; 
             
    }
	
	real GetFmax(real dt){                        
           real dtau = T1-T2;
           return  (exp(- T2 /dtau *log(T1/T2)) - exp(-T1 /dtau *log(T1/T2)))*dt/dtau;           
    }
    
// public variables (function parameters)
	
	real tau1, tau2, gMax, Mn;	// time constants and maximum of function alpha ; mean rate of IPSPs at rest
    real X,Y;
    int SynEv, SpkEv, sat;
    real interval;
    real Gk0;
    int decision;
	int calcul;
    real Mean,Freq,Freqmax,Fmax,T1,T2, Fsat;
    
 protected:
 
    real T;
 
};

#endif