Olfactory bulb network model of gamma oscillations (Bathellier et al. 2006; Lagier et al. 2007)

 Download zip file 
Help downloading and running models
This model implements a network of 100 mitral cells connected with asynchronous inhibitory "synapses" that is meant to reproduce the GABAergic transmission of ensembles of connected granule cells. For appropriate parameters of this special synapse the model generates gamma oscillations with properties very similar to what is observed in olfactory bulb slices (See Bathellier et al. 2006, Lagier et al. 2007). Mitral cells are modeled as single compartment neurons with a small number of different voltage gated channels. Parameters were tuned to reproduce the fast subthreshold oscillation of the membrane potential observed experimentally (see Desmaisons et al. 1999).
1 . Bathellier B, Lagier S, Faure P, Lledo PM (2006) Circuit properties generating gamma oscillations in a network model of the olfactory bulb. J Neurophysiol 95:2678-91 [PubMed]
2 . Lagier S, Panzanelli P, Russo RE, Nissant A, Bathellier B, Sassoè-Pognetto M, Fritschy JM, Lledo PM (2007) GABAergic inhibition at dendrodendritic synapses tunes gamma oscillations in the olfactory bulb. Proc Natl Acad Sci U S A 104:7259-64 [PubMed]
3 . Bathellier B, Lagier S, Faure P, Lledo PM (2006) Corrigendum for Bathellier et al., J Neurophysiol 95 (4) 2678-2691. J Neurophysiol 95:3961-3962
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Olfactory bulb;
Cell Type(s): Olfactory bulb main mitral GLU cell;
Channel(s): I Na,p; I Na,t; I A; I K;
Gap Junctions:
Receptor(s): GabaA;
Simulation Environment: C or C++ program;
Model Concept(s): Oscillations; Delay; Olfaction;
Search NeuronDB for information about:  Olfactory bulb main mitral GLU cell; GabaA; I Na,p; I Na,t; I A; I K;

	Cmprtmnt.h												JJS 8/26/95
		modified from CONICAL, the Computational Neuroscience Class Library
	A Compartment is an isopotential volume, to which other compartments
	may be attached through Links.  A Compartment may also have a number
	of Channels.  The current flow from these objects is balanced against
	the current flow through the Compartment membrane, to produce a new
	Compartment potential (voltage) in the Step method.

		VSource		-- base class
		VSink		-- base class
		Stepper		-- base class
		Link.h		-- header file for the Link class



#include "VSource.h"
#include "VSink.h"
#include "StepperRk4.h"
#include "Math.h"

// declare the Compartment class

class Compartment : public VSource, public VSink, public Stepper
    virtual void Init( const real dt );     // update V[]
	virtual void Step( const real dt );     // update V[]
	virtual void Stepk1(const real dt);     // update of the Runge Kutta k's     
	virtual void Stepk2(const real dt);
	virtual void Stepk3(const real dt);
	virtual void Stepk4(const real dt);

	virtual real GetV( void )				// get current voltage
	{ return V[itsMaster->GetCurIdx()]; }
	real GetgMax(real dt){
           real dtau = tau1-tau2;
           return  (exp(- tau2 /dtau *log(tau1/tau2)) - exp(-tau1 /dtau *log(tau1/tau2)))*dt/dtau ; 
// public variables (function parameters)
	real tau1, tau2, gMax;	// time constants and maximum of function alpha

/**** public variables: feel free to read or set these between steps! ****/
    real Gm;		// membrane conductance (siemens)
	real EGm;		// reversal potential times Gm (volt seimens, or amps)
	real Cm;		// negative of the membrane capacitance (farads)
    real P,P0;
    real EI;
    real X,GI, gMaxI, MaxGI; 

    real Vk1, Vk2, Vk3, Vk4;   //voltages at each step of the RK4 method