Cell splitting in neural networks extends strong scaling (Hines et al. 2008)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:97917
Neuron tree topology equations can be split into two subtrees and solved on different processors with no change in accuracy, stability, or computational effort; communication costs involve only sending and receiving two double precision values by each subtree at each time step. Application of the cell splitting method to two published network models exhibits good runtime scaling on twice as many processors as could be effectively used with whole-cell balancing.
Reference:
1 . Hines ML, Eichner H, Schürmann F (2008) Neuron splitting in compute-bound parallel network simulations enables runtime scaling with twice as many processors. J Comput Neurosci 25:203-10 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Generic;
Cell Type(s):
Channel(s):
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Methods;
Implementer(s): Hines, Michael [Michael.Hines at Yale.edu];
/
splitcell
nrntraub
mod
alphasyndiffeq.mod
alphasynkin.mod *
alphasynkint.mod *
ampa.mod
ar.mod *
cad.mod *
cal.mod *
cat.mod *
cat_a.mod *
gabaa.mod
iclamp_const.mod *
k2.mod *
ka.mod *
ka_ib.mod *
kahp.mod *
kahp_deeppyr.mod *
kahp_slower.mod *
kc.mod *
kc_fast.mod *
kdr.mod *
kdr_fs.mod *
km.mod *
naf.mod *
naf_tcr.mod
naf2.mod *
nap.mod *
napf.mod *
napf_spinstell.mod *
napf_tcr.mod *
par_ggap.mod *
pulsesyn.mod *
rampsyn.mod *
rand.mod *
ri.mod
traub_nmda.mod
                            
COMMENT
rampsyn.mod
for use with expsyn.mod to make a Traub-like NMDA receptor
Tom Morse, Michael Hines
ENDCOMMENT
NEURON {
	POINT_PROCESS RampSyn
	RANGE time_interval, e, i, weight, saturation_fact, k
	NONSPECIFIC_CURRENT i
}

UNITS {
	(nA) = (nanoamp)
	(mV) = (millivolt)
	(uS) = (microsiemens)
}

PARAMETER {
	time_interval = 5 (ms) <1e-9,1e9>
	e = 0	(mV)
	weight = 2.5e-5 (uS)	: example conductance scale from Traub 2005 et al
			 	: gNMDA_suppyrRS_to_suppyrRS (double check units)
	saturation_fact=1e10 (1) :80e0 (1) : this saturation factor is multiplied into
		: the conductance scale, weight, for testing against the
		: instantaneous conductance, to see if it should be limited.
}

ASSIGNED {
	v (mV)
	i (nA)
	k (uS/ms)
}

STATE {
	g (uS)
}

INITIAL {
	g=0
	k=0
}

BREAKPOINT {
	SOLVE state METHOD cnexp
	if (g > saturation_fact * weight) { g = saturation_fact * weight }
	i = g*(v - e)
}

DERIVATIVE state {
	g' = k
}

NET_RECEIVE(weight (uS)) {
	if (flag>=1) {
		: self event arrived, terminate ramp
		k = k - weight/time_interval
		g = g - weight
	} else {
		: stimulus arrived, make or continue ramp
		net_send(time_interval, 1) : self event to terminate ramp
		k = k + weight/time_interval
	}
}