CA3 pyramidal neuron: firing properties (Hemond et al. 2008)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:101629
In the paper, this model was used to identify how relative differences in K+ conductances, specifically KC, KM, & KD, between cells contribute to the different characteristics of the three types of firing patterns observed experimentally.
Reference:
1 . Hemond P, Epstein D, Boley A, Migliore M, Ascoli GA, Jaffe DB (2008) Distinct classes of pyramidal cells exhibit mutually exclusive firing patterns in hippocampal area CA3b. Hippocampus 18:411-24 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Hippocampus CA3 pyramidal GLU cell;
Channel(s): I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I CAN; I Calcium; I Potassium;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Bursting; Active Dendrites; Detailed Neuronal Models; Action Potentials;
Implementer(s): Migliore, Michele [Michele.Migliore at Yale.edu];
Search NeuronDB for information about:  Hippocampus CA3 pyramidal GLU cell; I Na,t; I L high threshold; I T low threshold; I A; I K; I M; I h; I K,Ca; I CAN; I Calcium; I Potassium;
/
ca3b
readme.html *
cacumm.mod *
cagk.mod *
cal2.mod *
can2.mod *
cat.mod *
distr.mod *
h.mod *
KahpM95.mod *
kaprox.mod *
kd.mod *
kdrca1.mod *
km.mod *
na3n.mod *
naxn.mod *
ca3b-cell1zr.hoc *
ca3b-cell1zr.ses *
fixnseg.hoc *
geo-cell1zr.hoc *
mosinit.hoc *
screenshot.jpg *
                            
:Migliore file Modify by Maciej Lazarewicz (mailto:mlazarew@gmu.edu) May/16/2001

TITLE Borg-Graham type generic K-AHP channel

NEURON {
	SUFFIX KahpM95
	USEION k READ ek WRITE ik
        USEION ca READ cai
        RANGE  gbar,ik, gkahp
        GLOBAL inf,tau
}

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)
}

PARAMETER {
	celsius = 6.3	(degC)
	gbar	= .003 	(mho/cm2)
        n	= 4
        cai	= 50.e-6 (mM)
        a0	= 1e8 (/ms-mM-mM-mM-mM)		:b0/(20e-4^4)
        b0	= .5e-2  (/ms)			:0.5/(0.100e3)
        v       	 (mV)
        ek      	 (mV)
	q10=3
}

STATE {	w }

ASSIGNED {
	ik 		(mA/cm2)
        gkahp  		(mho/cm2)
        inf
        tau
}

BREAKPOINT {
	SOLVE state METHOD cnexp
	gkahp = gbar*w
	ik = gkahp*(v-ek)
}

INITIAL {
	rate(cai)
	w=inf
}

FUNCTION alp(cai (mM)) {
  alp = a0*cai^n
}

DERIVATIVE state {     : exact when v held constant; integrates over dt step
        rate(cai)
        w' = (inf - w)/tau
}

PROCEDURE rate(cai (mM)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-24)/10)
        a = alp(cai)
        tau = 1/(qt*(a + b0))
        inf = a*tau*qt
}