Nav1.6 sodium channel model in globus pallidus neurons (Mercer et al. 2007)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:105385
Model files for the paper Mercer JN, Chan CS, Tkatch T, Held J, Surmeier DJ. Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons.,J Neurosci. 2007 Dec 5;27(49):13552-66.
Reference:
1 . Mercer JN, Chan CS, Tkatch T, Held J, Surmeier DJ (2007) Nav1.6 sodium channels are critical to pacemaking and fast spiking in globus pallidus neurons. J Neurosci 27:13552-66 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Globus pallidus neuron;
Channel(s): I Na,p; I Na,t; I K; I h; I K,Ca; I Sodium; I Calcium; I Potassium;
Gap Junctions:
Receptor(s):
Gene(s): Nav1.6 SCN8A;
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Action Potentials; Parkinson's;
Implementer(s): Held, Joshua [j-held at northwestern.edu];
Search NeuronDB for information about:  I Na,p; I Na,t; I K; I h; I K,Ca; I Sodium; I Calcium; I Potassium;
:   KV1_GP.MOD
:
:   Kv1.2 channel model using HH-type activation/inactivation
:
:   3/2003
:   Josh Held

NEURON {
	SUFFIX kv1_gp
	USEION k READ ek WRITE ik
	RANGE th, tm, ik, hinf, minf, g, gbar
	GLOBAL p
	GLOBAL vhm, vcm
	GLOBAL vhh, vch
	GLOBAL Cth, vhth, ath, bth, th0
	GLOBAL tm0, Ctm, vhtm, vctm
	GLOBAL th90
	GLOBAL Cq10
}

UNITS {
	(S) = (siemens)
	(mV) = (millivolt)
	(mA) = (milliamp)
}

PARAMETER {
	gbar = 1	(S/cm2)
	ek		(mV)
	vhm = -27	(mV)
	vhh = -33.477	(mV)
	vcm = -16	(mV)
	vch = 21.5	(mV)
	Cth = 548.67	(ms)
	vhth = -0.956	(mV)
	ath = 29.013	(mV)
	bth= 100	(mV)
	th0 = 779	(ms)
	tm0 = 3.4	(ms)
	Ctm = 89.2	(ms)
	vhtm = -34.3	(mV)
	vctm = 30.1	(mV)
	p = 0.004
	celsius		(degC)
	Cq10 = 3
}

ASSIGNED {
	v	(mV)
	minf
	hinf
	tm	(ms)
	th	(ms)
	th90	(ms)
	ik	(mA/cm2)
	g	(S/cm2)
}

STATE {
	m
	h
}

BREAKPOINT {
	SOLVE states METHOD cnexp
	g = gbar * (m^2) * h 
	ik = g * (v - ek) 
}

DERIVATIVE states{
	values()
	m' = (minf - m)/tm
	h' = (hinf - h)/th
}

INITIAL {
	values()
	m = minf
	h = hinf
}

PROCEDURE values() {LOCAL q10
	q10 = Cq10^((celsius-22 (degC))/10 (degC))
	minf = 1/(1 + exp((v - vhm)/vcm))
	tm = (1/q10)*(tm0 + Ctm*exp(-((v-vhtm)/vctm)^2))

	hinf = (1-p)/(1 + exp((v - vhh)/vch)) + p
	th = (1/q10)*((Cth/(exp((v-vhth)/ath) + exp(-(v-vhth)/bth))) + th0)
	th90 = (1/q10)*((Cth/(exp((-90-vhth)/ath) + exp(-(-90-vhth)/bth))) + th0)
}