Thalamic interneuron multicompartment model (Zhu et al. 1999)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:116862
This is an attempt to recreate a set of simulations originally performed in 1994 under NEURON version 3 and last tested in 1999. When I ran it now it did not behave exactly the same as previously which I suspect is due to some minor mod file changes on my side rather than due to any differences among versions. After playing around with the parameters a little bit I was able to get something that looks generally like a physiological trace in J Neurophysiol, 81:702--711, 1999, fig. 8b top trace. This sad preface is simply offered in order to encourage anyone who is interested in this model to make and post fixes. I'm happy to help out. Simulation by JJ Zhu To run nrnivmodl nrngui.hoc
Reference:
1 . Zhu JJ, Uhlrich DJ, Lytton WW (1999) Burst firing in identified rat geniculate interneurons. Neuroscience 91:1445-60 [PubMed]
2 . Zhu JJ, Lytton WW, Xue JT, Uhlrich DJ (1999) An intrinsic oscillation in interneurons of the rat lateral geniculate nucleus. J Neurophysiol 81:702-11 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism: Thalamus;
Cell Type(s):
Channel(s): I Na,t; I L high threshold; I T low threshold; I K,leak; I h; I K,Ca; I CAN;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Bursting; Oscillations;
Implementer(s): Zhu, J. Julius [jjzhu at virginia.edu];
Search NeuronDB for information about:  I Na,t; I L high threshold; I T low threshold; I K,leak; I h; I K,Ca; I CAN;
/
b09jan13
readme.html
AMPA.mod
cadecay.mod
clampex.mod *
cp.mod *
cp2.mod *
GABAA.mod
GABAB.mod
HH2.mod *
Iahp.mod *
Ican.mod *
Ih.mod *
IL.mod
IL3.mod *
IT.mod *
IT2.mod *
kdr2.mod *
kleak.mod *
kmbg.mod
naf2.mod *
nap.mod *
NMDA.mod
nthh.mod *
ntIh.mod *
ntleak.mod
ntt.mod *
pregencv.mod
vecst.mod
batch_.hoc
bg_cvode.inc
misc.h
mosinit.hoc *
netcon.inc
screenshot.jpg
                            
: $Id: bg_cvode.inc,v 1.19 2009/01/13 13:59:48 billl Exp $
TITLE Kevin's Cvode modification to Borg Graham Channel Model

COMMENT

Modeling the somatic electrical response of hippocampal pyramidal neurons, 
MS thesis, MIT, May 1987.

Each channel has activation and inactivation particles as in the original
Hodgkin Huxley formulation.  The activation particle mm and inactivation
particle hh go from on to off states according to kinetic variables alpha
and beta which are voltage dependent.  The form of the alpha and beta
functions were dissimilar in the HH study.  The BG formulae are:
	alpha = base_rate * Exp[(v - v_half)*valence*gamma*F/RT]
	beta = base_rate * Exp[(-v + v_half)*valence*(1-gamma)*F/RT]
where,
	baserate : no affect on Inf.  Lowering this increases the maximum
		    value of Tau
	basetau : (in msec) minimum Tau value.
	chanexp : number for exponentiating the state variable; e.g.
		  original HH Na channel use m^3, note that chanexp = 0
		  will turn off this state variable
	erev : reversal potential for the channel
	gamma : (between 0 and 1) does not affect the Inf but makes the
		Tau more asymetric with increasing deviation from 0.5
	celsius : temperature at which experiment was done (Tau will
		      will be adjusted using a q10 of 3.0)
	valence : determines the steepness of the Inf sigmoid.  Higher
		  valence gives steeper sigmoid.
	vhalf : (a voltage) determines the voltage at which the value
		 of the sigmoid function for Inf is 1/2
        vrest : (a voltage) voltage shift for vhalf

ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
  RANGE gmax, g, i
  GLOBAL erev, Inf, Tau, vrest, ki, mininf
} : end NEURON

CONSTANT {
  FARADAY = 96489.0	: Faraday's constant
  R= 8.31441		: Gas constant
} : end CONSTANT

UNITS {
  (mA) = (milliamp)
  (mV) = (millivolt)
  (umho) = (micromho)
} : end UNITS


COMMENT
** Parameter values should come from files specific to particular channels
PARAMETER {
	erev 		= 0    (mV)
	gmax 		= 0    (mho/cm^2)
        vrest           = 0    (mV)

	mvalence 	= 0
	mgamma 		= 0
	mbaserate 	= 0
	mvhalf 		= 0
	mbasetau 	= 0
	mtemp 		= 0
	mq10		= 3
	mexp 		= 0

	hvalence 	= 0
	hgamma		= 0
	hbaserate 	= 0
	hvhalf 		= 0
	hbasetau 	= 0
	htemp 		= 0
	hq10		= 3
	hexp 		= 0

} : end PARAMETER
ENDCOMMENT

PARAMETER {
  ki = 1e-3  (mM)
  mininf = 1e-4
  cao                (mM)
  cai                (mM)
}

ASSIGNED {
  i (mA/cm^2)		
  g (mho/cm^2)
  Inf[2]		: 0 = m and 1 = h
  Tau[2]		: 0 = m and 1 = h
  mexp_val
  hexp_val
} : end ASSIGNED 

STATE { m h }

INITIAL { 
  mh(v)
  m = Inf[0] h = Inf[1]
}

BREAKPOINT {
  if (gmax==0.0) { g=0. } else {

  SOLVE states METHOD cnexp

  hexp_val = 1
  mexp_val = 1

  : Determining h's exponent value
  if (hexp > 0) {
    FROM index=1 TO hexp {
      hexp_val = h * hexp_val
    }
  }

  : Determining m's exponent value
  if (mexp > 0) {
    FROM index = 1 TO mexp {
      mexp_val = m * mexp_val
    }
  }

  :		       	         mexp			      hexp
  : Note that mexp_val is now = m      and hexp_val is now = h 
  g = gmax * mexp_val * hexp_val
  }
  iassign()
} : end BREAKPOINT

: ASSIGNMENT PROCEDURES
: Must be overwritten by user routines in parameters.multi
: PROCEDURE iassign () { i = g*(v-erev) ina=i }
: PROCEDURE iassign () { i = g*ghkca(v) ica=i }

:-------------------------------------------------------------------

DERIVATIVE states {
  mh(v)
  m' = (-m + Inf[0]) / Tau[0] 
  h' = (-h + Inf[1]) / Tau[1]
}
:-------------------------------------------------------------------
: NOTE : 0 = m and 1 = h
PROCEDURE mh (v) {
  LOCAL a, b, j, mqq10, hqq10

  mqq10 = mq10^((celsius-mtemp)/10.)	
  hqq10 = hq10^((celsius-htemp)/10.)	

  : Calculater Inf and Tau values for h and m
  FROM j = 0 TO 1 {
    a = alpha (v, j)
    b = beta (v, j)

    Inf[j] = a / (a + b)
    if (Inf[j]<mininf) { Inf[j]=0 }

    VERBATIM
    switch (_lj) {
      case 0:
      /* Make sure Tau is not less than the base Tau */
if ((Tau[_lj] = 1 / (_la + _lb)) < mbasetau) {
  Tau[_lj] = mbasetau;
}
Tau[_lj] = Tau[_lj] / _lmqq10;
break;
case 1:
if ((Tau[_lj] = 1 / (_la + _lb)) < hbasetau) {
  Tau[_lj] = hbasetau;
}
Tau[_lj] = Tau[_lj] / _lhqq10;
if (hexp==0) {
  Tau[_lj] = 1.; }
  break;
    }

    ENDVERBATIM
  }
} : end PROCEDURE mh (v)
:-------------------------------------------------------------------
FUNCTION alpha(v,j) {
  if (j == 1) {
    if (hexp==0) {
      alpha = 1
    } else {
      alpha = hbaserate * exp((v - (hvhalf+vrest)) * hvalence * hgamma * FRT(htemp)) }
  } else {
    alpha = mbaserate * exp((v - (mvhalf+vrest)) * mvalence * mgamma * FRT(mtemp))
  }
} : end FUNCTION alpha (v,j)

:-------------------------------------------------------------------
FUNCTION beta (v,j) {
  if (j == 1) {
    if (hexp==0) {
      beta = 1
    } else {
      beta = hbaserate * exp((-v + (hvhalf+vrest)) * hvalence * (1 - hgamma) * FRT(htemp)) }
  } else {
    beta = mbaserate * exp((-v + (mvhalf+vrest)) * mvalence * (1 - mgamma) * FRT(mtemp))
  }
} : end FUNCTION beta (v,j)

:-------------------------------------------------------------------
FUNCTION FRT(temperature) {
	FRT = FARADAY * 0.001 / R / (temperature + 273.15)
} : end FUNCTION FRT (temperature)

:-------------------------------------------------------------------
FUNCTION ghkca (v) { : Goldman-Hodgkin-Katz eqn
  LOCAL nu, efun

  nu = v*2*FRT(celsius)
  if(fabs(nu) < 1.e-6) {
    efun = 1.- nu/2.
  } else {
    efun = nu/(exp(nu)-1.) }

    ghkca = -FARADAY*2.e-3*efun*(cao - cai*exp(nu))
} : end FUNCTION ghkca()

: Ca-mediated inactivation of Ca channels, see Hille, Ed2 p179-180
: use eg iassign () { i = g*faco()*ghkca(v) ica=i }
FUNCTION faco() {
  faco = ki/(ki+cai)
}