Thalamic neuron: Modeling rhythmic neuronal activity (Meuth et al. 2005)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:121600
The authors use an in vitro cell model of a single acutely isolated thalamic neuron in the NEURON simulation environment to address and discuss questions in an undergraduate course. Topics covered include passive electrical properties, composition of action potentials, trains of action potentials, multicompartment modeling, and research topics. The paper includes detailed instructions on how to run the simulations in the appendix.
Reference:
1 . Meuth P, Meuth SG, Jacobi D, Broicher T, Pape HC, Budde T (2005) Get the rhythm: modeling neuronal activity. J Undergrad Neurosci Educ 4:A1-A11 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Thalamus geniculate nucleus/lateral principal GLU cell;
Channel(s): I Na,t; I L high threshold; I T low threshold; I A; I K; I h;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Bursting; Tutorial/Teaching; Action Potentials;
Implementer(s):
Search NeuronDB for information about:  Thalamus geniculate nucleus/lateral principal GLU cell; I Na,t; I L high threshold; I T low threshold; I A; I K; I h;
/
MeuthEtAl2005_local
model
4
HH.mod *
HH.mod.orig
ia.mod *
ic.mod *
ih.mod *
il.mod *
inap.mod *
it.mod *
leak.mod *
Exp4.ses
Neuron.hoc
Neuron.hoc.bak
                            
TITLE transient and low threshold calcium current (T-current)

COMMENT
        *********************************************
        reference:  	Huguenard & McCormick (1992) 
			J.Neurophysiology 68(4), 1373-1383
        found in:       thalamic relay neurons
        *********************************************
	Assembled for MyFirstNEURON by Arthur Houweling
ENDCOMMENT

INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

NEURON {
	SUFFIX iT
	USEION ca READ cai,cao
	USEION Ca WRITE iCa VALENCE 2
	: The T-current does not activate calcium-dependent currents.
	: The construction with dummy ion Ca prevents the updating of the 
	: internal calcium concentration. 
        RANGE pcabar, m_inf, h_inf, tau_m, tau_h, iCa
}

UNITS {
	(mA)	= (milliamp)
	(mV)	= (millivolt)
	(mM)	= (milli/liter)
        FARADAY = 96480 (coul)
        R       = 8.314 (volt-coul/degC)
}

PARAMETER {
	v		(mV)
	celsius		(degC)
        dt              (ms)
	cai		(mM)
	cao		(mM)
	pcabar= 0.0001	(cm/s)		
}

STATE {
	m h
}

ASSIGNED {
	iCa		(mA/cm2)
	tau_m		(ms)
	tau_h		(ms)
	m_inf 
	h_inf
	tadjm
	tadjh
}

BREAKPOINT { 
	SOLVE state :METHOD euler
	iCa = pcabar * m*m*h * ghk(v,cai,cao,2)
}

:DERIVATIVE state {
:       rates(v)
:   
:       m'= (m_inf-m) / tau_m
:       h'= (h_inf-h) / tau_h
:}
 
PROCEDURE state() {
        rates(v)

        m= m + (1-exp(-dt/tau_m))*(m_inf-m)
        h= h + (1-exp(-dt/tau_h))*(h_inf-h)
}

UNITSOFF
INITIAL {
	tadjm= 3.55^((celsius-23.5)/10)
	tadjh= 2.8^((celsius-23.5)/10)
	rates(v)
	m = m_inf
	h = h_inf
}

FUNCTION ghk( v(mV), ci(mM), co(mM), z)  (millicoul/cm3) { LOCAL e, w
        w = v * (.001) * z*FARADAY / (R*(celsius+273.16))
        if (fabs(w)>1e-4) 
          { e = w / (exp(w)-1) }
        else : denominator is small -> Taylor series
          { e = 1-w/2 }
        ghk = - (.001) * z*FARADAY * (co-ci*exp(w)) * e
}
UNITSOFF

PROCEDURE rates(v(mV)) { 
	tau_m = (1/(exp((v+131.6)/-16.7)+exp((v+16.8)/18.2)) + 0.612) / tadjm 
	m_inf = 1 / (1+exp((v+60.5)/-6.2))
	if (v<-80) 
	  { tau_h = exp((v+467)/66.6) / tadjh }
	else  
	  { tau_h = (exp((v+21.88)/-10.52)+28) / tadjh }
	h_inf = 1 / (1+exp((v+84)/4.03)) 
}

UNITSON