Thalamic neuron: Modeling rhythmic neuronal activity (Meuth et al. 2005)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:121600
The authors use an in vitro cell model of a single acutely isolated thalamic neuron in the NEURON simulation environment to address and discuss questions in an undergraduate course. Topics covered include passive electrical properties, composition of action potentials, trains of action potentials, multicompartment modeling, and research topics. The paper includes detailed instructions on how to run the simulations in the appendix.
Reference:
1 . Meuth P, Meuth SG, Jacobi D, Broicher T, Pape HC, Budde T (2005) Get the rhythm: modeling neuronal activity. J Undergrad Neurosci Educ 4:A1-A11 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell;
Brain Region(s)/Organism:
Cell Type(s): Thalamus geniculate nucleus/lateral principal GLU cell;
Channel(s): I Na,t; I L high threshold; I T low threshold; I A; I K; I h;
Gap Junctions:
Receptor(s):
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Bursting; Tutorial/Teaching; Action Potentials;
Implementer(s):
Search NeuronDB for information about:  Thalamus geniculate nucleus/lateral principal GLU cell; I Na,t; I L high threshold; I T low threshold; I A; I K; I h;
TITLE Hodgkin-Huxley like sodium, potassium, and leak channels

COMMENT
        *********************************************
        reference:      McCormick & Huguenard (1992) 
			J.Neurophysiology 68(4), 1384-1400
        found in:       cortical pyramidal cells
        *********************************************
        Assembled for MyFirstNEURON by Arthur Houweling
ENDCOMMENT

: INDEPENDENT {t FROM 0 TO 1 WITH 1 (ms)}

UNITS {
        (mA) = (milliamp)
        (mV) = (millivolt)
}
 
NEURON {
        SUFFIX HH
        USEION na READ ena WRITE ina
        USEION k READ ek WRITE ik
        NONSPECIFIC_CURRENT il
        RANGE gnabar,gkbar,gl,el,m_inf,h_inf,n_inf,tau_m,tau_n,tau_h,ina,ik 
}
 
PARAMETER {
        v		(mV)
        celsius		(degC)
        dt		(ms)
        gnabar= 0.1	(mho/cm2)
        ena		(mV)
        gkbar= 0.01	(mho/cm2)
        ek		(mV)
        gl= 0		(mho/cm2)
        el		(mV)
}
 
STATE {
        m h n
}
 
ASSIGNED {
        ina	(mA/cm2)
        ik	(mA/cm2)
        il	(mA/cm2)
        m_inf h_inf n_inf tau_m tau_h tau_n
	tadj
}
 
BREAKPOINT {
        SOLVE states
        ina = gnabar * m*m*m*h * (v - ena)
        ik = gkbar * n*n*n*n * (v - ek)      
        il = gl * (v-el)
}
 
UNITSOFF
INITIAL {
	tadj = 3.0^((celsius-23.5)/10)
	rates(v)
	m = m_inf
	h = h_inf
	n = n_inf
}

PROCEDURE states() { 
        rates(v)   
        m = m + (1-exp(-dt/tau_m)) * (m_inf-m)
        h = h + (1-exp(-dt/tau_h)) * (h_inf-h)
        n = n + (1-exp(-dt/tau_n)) * (n_inf-n)
}
 
PROCEDURE rates(v) { LOCAL alpha, beta, q10, tinc
:        TABLE m_inf, tau_m, h_inf, tau_h, n_inf, tau_n DEPEND dt, 
:	      celsius FROM -100 TO 100 WITH 200
	:"m" sodium activation system
          alpha = .091 * vtrap(v+38,5)
          beta =  .062 * vtrap(-(v+38),5) 
       	  tau_m = 1 / (alpha+beta) / tadj
       	  m_inf = alpha/(alpha+beta)
	:"h" sodium inactivation system
       	  alpha = .016 * exp(-(v+55)/15)
       	  beta = 2.07 / (1+exp((17-v)/21))
       	  tau_h = 1 / (alpha+beta) / tadj
       	  h_inf = alpha/(alpha+beta)
	:"n" potassium activation system
       	  alpha = .01*vtrap(v+45,5) 
       	  beta = .17*exp(-(v+50)/40)
       	  tau_n = 1 / (alpha+beta) / tadj
       	  n_inf = alpha/(alpha+beta)
}
 
FUNCTION vtrap( x, b) {
	: Traps for 0 in denominator of rate equations
	if (fabs(x/b) < 1e-6) {
	  vtrap = b+x/2 }
	else {
	  vtrap = x / (1-exp(-x/b)) }
}
UNITSON