Encoding and retrieval in a model of the hippocampal CA1 microcircuit (Cutsuridis et al. 2009)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:123815
This NEURON code implements a small network model (100 pyramidal cells and 4 types of inhibitory interneuron) of storage and recall of patterns in the CA1 region of the mammalian hippocampus. Patterns of PC activity are stored either by a predefined weight matrix generated by Hebbian learning, or by STDP at CA3 Schaffer collateral AMPA synapses.
Reference:
1 . Cutsuridis V, Cobb S, Graham BP (2010) Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus 20:423-46 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Realistic Network;
Brain Region(s)/Organism: Hippocampus;
Cell Type(s): Hippocampus CA1 pyramidal GLU cell; Hippocampus CA1 basket cell;
Channel(s):
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s):
Simulation Environment: NEURON;
Model Concept(s): Pattern Recognition; Activity Patterns; Temporal Pattern Generation; Learning; STDP; Connectivity matrix; Storage/recall;
Implementer(s): Graham, Bruce [B.Graham at cs.stir.ac.uk]; Cutsuridis, Vassilis [vcutsuridis at gmail.com];
Search NeuronDB for information about:  Hippocampus CA1 pyramidal GLU cell; GabaA; AMPA; NMDA;
/
Hipp_paper_code
Results
Weights
readme.txt
ANsyn.mod *
bgka.mod *
burststim2.mod *
cad.mod *
cagk.mod *
cal.mod *
calH.mod *
car.mod *
cat.mod *
ccanl.mod *
gskch.mod *
h.mod *
hha_old.mod *
hha2.mod *
hNa.mod *
IA.mod *
ichan2.mod *
Ih.mod *
kad.mod *
kap.mod *
Kaxon.mod *
kca.mod *
Kdend.mod *
km.mod *
Ksoma.mod *
LcaMig.mod *
my_exp2syn.mod *
Naaxon.mod *
Nadend.mod *
Nasoma.mod *
nca.mod *
nmda.mod *
regn_stim.mod *
somacar.mod *
STDPE2Syn.mod *
axoaxonic_cell17S.hoc *
basket_cell17S.hoc *
bistratified_cell13S.hoc *
burst_cell.hoc *
HAM_SR.ses
HAM_StoRec_par.hoc
HAM_StoRec_ser.hoc
mosinit.hoc
olm_cell2.hoc
pyramidal_cell_14Vb.hoc
ranstream.hoc *
stim_cell.hoc *
                            
random_stream_offset_ = 1000

begintemplate RandomStream
public r, repick, start, stream
external random_stream_offset_
objref r
proc init() {
	stream = $1
	r = new Random()
	start()
}
func start() {
	return r.MCellRan4(stream*random_stream_offset_ + 1)
}
func repick() {
	return r.repick()
}
endtemplate RandomStream