Action Potential initiation and backpropagation in Neocortical L5 Pyramidal Neuron (Hu et al. 2009)

 Download zip file   Auto-launch 
Help downloading and running models
"...Previous computational studies have yielded conflicting conclusions about the role of Na+ channel density and biophysical properties in action potential initiation as a result of inconsistent estimates of channel density. Our modeling studies integrated the immunostaining and electrophysiological results and showed that the lowest threshold for action potential initiation at the distal AIS was largely determined by the density of low-threshold Nav1.6 channels ... Distinct from the function of Nav1.6 channel, the Nav1.2 channel may control action potential backpropagation because of its high density at the proximal AIS and high threshold. ... In conclusion, distal AIS accumulation of Nav1.6 channels determines the low threshold for action potential initiation; whereas proximal AIS accumulation of Nav1.2 channels sets the threshold for the generation of somatodendritic potentials and ensures action potential backpropagation to the soma and dendrites. Thus, Nav1.6 and Nav1.2 channels serve distinct functions in action potential initiation and backpropagation."
1 . Hu W, Tian C, Li T, Yang M, Hou H, Shu Y (2009) Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation. Nat Neurosci 12:996-1002 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Axon; Channel/Receptor;
Brain Region(s)/Organism:
Cell Type(s): Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; Neocortex U1 L5B pyramidal pyramidal tract GLU cell;
Channel(s): I K; I M; I K,Ca; I Sodium; I Calcium;
Gap Junctions:
Gene(s): Nav1.2 SCN2A; Nav1.6 SCN8A;
Simulation Environment: NEURON;
Model Concept(s): Action Potential Initiation; Ion Channel Kinetics; Axonal Action Potentials;
Implementer(s): Hu, Wenqin [huwenqin at]; Hou, Han [hh at];
Search NeuronDB for information about:  Neocortex U1 L5B pyramidal pyramidal tract GLU cell; Neocortex U1 L2/6 pyramidal intratelencephalic GLU cell; I K; I M; I K,Ca; I Sodium; I Calcium;
ca.mod *
cad.mod *
gabaa.mod *
kca.mod *
km.mod *
kv.mod *
na.mod *
na12.mod *
na16.mod *
TITLE decay of internal calcium concentration
: Internal calcium concentration due to calcium currents and pump.
: Differential equations.
: Simple model of ATPase pump with 3 kinetic constants (Destexhe 92)
:     Cai + P <-> CaP -> Cao + P  (k1,k2,k3)
: A Michaelis-Menten approximation is assumed, which reduces the complexity
: of the system to 2 parameters: 
:       kt = <tot enzyme concentration> * k3  -> TIME CONSTANT OF THE PUMP
:	kd = k2/k1 (dissociation constant)    -> EQUILIBRIUM CALCIUM VALUE
: The values of these parameters are chosen assuming a high affinity of 
: the pump to calcium and a low transport capacity (cfr. Blaustein, 
: TINS, 11: 438, 1988, and references therein).  
: Units checked using "modlunit" -> factor 10000 needed in ca entry
: VERSION OF PUMP + DECAY (decay can be viewed as simplified buffering)
: All variables are range variables
: This mechanism was published in:  Destexhe, A. Babloyantz, A. and 
: Sejnowski, TJ.  Ionic mechanisms for intrinsic slow oscillations in
: thalamic relay neurons. Biophys. J. 65: 1538-1552, 1993)
: Written by Alain Destexhe, Salk Institute, Nov 12, 1992


	USEION ca READ ica, cai WRITE cai
	GLOBAL depth,cainf,taur

	(molar) = (1/liter)			: moles do not appear in units
	(mM)	= (millimolar)
	(um)	= (micron)
	(mA)	= (milliamp)
	(msM)	= (ms mM)
	FARADAY = (faraday) (coulomb)

	depth	= .1	(um)		: depth of shell
	taur	= 200	(ms)		: rate of calcium removal
	cainf	= 100e-6(mM)
	cai		(mM)

	ca		(mM) 

	ca = cainf

	ica		(mA/cm2)
	drive_channel	(mM/ms)
	SOLVE state METHOD derivimplicit


	drive_channel =  - (10000) * ica / (2 * FARADAY * depth)
	if (drive_channel <= 0.) { drive_channel = 0. }	: cannot pump inward

	ca' = drive_channel + (cainf-ca)/taur
	cai = ca