Synaptic integration in tuft dendrites of layer 5 pyramidal neurons (Larkum et al. 2009)

 Download zip file   Auto-launch 
Help downloading and running models
Accession:124043
Simulations used in the paper. Voltage responses to current injections in different tuft locations; NMDA and calcium spike generation. Summation of multiple input distribution.
Reference:
1 . Larkum ME, Nevian T, Sandler M, Polsky A, Schiller J (2009) Synaptic integration in tuft dendrites of layer 5 pyramidal neurons: a new unifying principle. Science 325:756-60 [PubMed]
Citations  Citation Browser
Model Information (Click on a link to find other models with that property)
Model Type: Neuron or other electrically excitable cell; Synapse; Dendrite;
Brain Region(s)/Organism:
Cell Type(s): Neocortex L5/6 pyramidal GLU cell;
Channel(s): I L high threshold; I p,q; I A; I K,leak; I K,Ca; I Sodium;
Gap Junctions:
Receptor(s): GabaA; AMPA; NMDA;
Gene(s):
Transmitter(s): Gaba; Glutamate;
Simulation Environment: NEURON;
Model Concept(s): Dendritic Action Potentials; Active Dendrites; Detailed Neuronal Models; Synaptic Integration;
Implementer(s): Polsky, Alon [alonpol at tx.technion.ac.il];
Search NeuronDB for information about:  Neocortex L5/6 pyramidal GLU cell; GabaA; AMPA; NMDA; I L high threshold; I p,q; I A; I K,leak; I K,Ca; I Sodium; Gaba; Glutamate;
/
larkumEtAl2009_2
readme.html
ampa.mod
cad2.mod
glutamate.mod *
h.mod *
h2.mod
hh3.mod *
ih.mod
it2.mod *
kap.mod
kca.mod *
kdf.mod
Kdr.mod *
kdr2.mod *
km.mod *
SlowCa.mod *
0.50764
0.55472
070603c2.cll
apic.ses
apical_simulation.hoc
layerV.cll
mosinit.hoc
screenshot1.jpg
screenshot2.jpg
screenshot3.jpg
screenshot4.jpg
screenshot5.jpg
screenshot6.jpg
                            
TITLE K-A channel from Klee Ficker and Heinemann
: modified to account for Dax A Current --- M.Migliore Jun 1997
: modified to be used with cvode  M.Migliore 2001

UNITS {
	(mA) = (milliamp)
	(mV) = (millivolt)

}

PARAMETER {
	v (mV)
	celsius		(degC)
	gkabar=.008 (mho/cm2)
     	vhalfn=11   (mV)
     	vhalfl=-56   (mV)
     	a0l=0.05      (/ms)
     	a0n=0.05    (/ms)
     	zetan=-1.5    (1)
     	zetal=3    (1)
     	gmn=0.55   (1)
     	gml=1   (1)
	lmin=2  (mS)
	nmin=0.1  (mS)
	pw=-1    (1)
	tq=-40
	qq=5
	q10=5
	qtl=1
	ek
}


NEURON {
	SUFFIX kap
	USEION k READ ek WRITE ik
        RANGE gkabar,gka
        GLOBAL ninf,linf,taul,taun,lmin
}

STATE {
	n
        l
}

ASSIGNED {
	ik (mA/cm2)
        ninf
        linf      
        taul
        taun
        gka
}

INITIAL {
	rates(v)
	n=ninf
	l=linf
}


BREAKPOINT {
	SOLVE states METHOD cnexp
	gka = gkabar*n*l
	ik = gka*(v-ek)

}


FUNCTION alpn(v(mV)) {
LOCAL zeta
  zeta=zetan+pw/(1+exp((v-tq)/qq))
  alpn = exp(1.e-3*zeta*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betn(v(mV)) {
LOCAL zeta
  zeta=zetan+pw/(1+exp((v-tq)/qq))
  betn = exp(1.e-3*zeta*gmn*(v-vhalfn)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION alpl(v(mV)) {
  alpl = exp(1.e-3*zetal*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) 
}

FUNCTION betl(v(mV)) {
  betl = exp(1.e-3*zetal*gml*(v-vhalfl)*9.648e4/(8.315*(273.16+celsius))) 
}

DERIVATIVE states {     : exact when v held constant; integrates over dt step
        rates(v)
        n' = (ninf - n)/taun
        l' =  (linf - l)/taul
}

PROCEDURE rates(v (mV)) { :callable from hoc
        LOCAL a,qt
        qt=q10^((celsius-24)/10)
        a = alpn(v)
        ninf = 1/(1 + a)
        taun = betn(v)/(qt*a0n*(1+a))
	if (taun<nmin) {taun=nmin}
        a = alpl(v)
        linf = 1/(1+ a)
	taul = 0.26*(v+50)/qtl
	if (taul<lmin/qtl) {taul=lmin/qtl}
}