Advanced search
User account
Login
Register
Find models by
Model name
First author
Each author
Find models for
Brain region
Concept
Find models of
Realistic Microcircuits
Connectionist Networks
Biophysically realistic neural modeling of the MEG mu rhythm (Jones et al. 2009)
Download zip file
Auto-launch
Help downloading and running models
Model Information
Model File
Model Views
Versions
Accession:
136803
"Variations in cortical oscillations in the alpha (7–14 Hz) and beta (15–29 Hz) range have been correlated with attention, working memory, and stimulus detection. The mu rhythm recorded with magnetoencephalography (MEG) is a prominent oscillation generated by Rolandic cortex containing alpha and beta bands. Despite its prominence, the neural mechanisms regulating mu are unknown. We characterized the ongoing MEG mu rhythm from a localized source in the finger representation of primary somatosensory (SI) cortex. Subjects showed variation in the relative expression of mu-alpha or mu-beta, which were nonoverlapping for roughly 50% of their respective durations on single trials. To delineate the origins of this rhythm, a biophysically principled computational neural model of SI was developed, with distinct laminae, inhibitory and excitatory neurons, and feedforward (FF, representative of lemniscal thalamic drive) and feedback (FB, representative of higher-order cortical drive or input from nonlemniscal thalamic nuclei) inputs defined by the laminar location of their postsynaptic effects. ..."
Reference:
1 .
Jones SR, Pritchett DL, Sikora MA, Stufflebeam SM, Hämäläinen M, Moore CI (2009) Quantitative analysis and biophysically realistic neural modeling of the MEG mu rhythm: rhythmogenesis and modulation of sensory-evoked responses.
J Neurophysiol
102
:3554-72
[
PubMed
]
Citations
Citation Browser
Model Information
(Click on a link to find other models with that property)
Model Type:
Realistic Network;
Brain Region(s)/Organism:
Neocortex;
Cell Type(s):
Neocortex L5/6 pyramidal GLU cell;
Neocortex L2/3 pyramidal GLU cell;
Channel(s):
I Na,t;
I T low threshold;
I K;
I h;
Gap Junctions:
Receptor(s):
GabaA;
GabaB;
AMPA;
NMDA;
Gene(s):
Transmitter(s):
Simulation Environment:
NEURON;
Model Concept(s):
Activity Patterns;
Touch;
Implementer(s):
Search NeuronDB
for information about:
Neocortex L5/6 pyramidal GLU cell
;
Neocortex L2/3 pyramidal GLU cell
;
GabaA
;
GabaB
;
AMPA
;
NMDA
;
I Na,t
;
I T low threshold
;
I K
;
I h
;
/
JonesEtAl2009
File not selected
<- Select file from this column.
Load Model View